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 “Reason is, and ought to be the slave of the passions, and can never pretend to any other office 

than to serve and obey them.” 

 

- David Hume 

Treatise of Human Nature 
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ABSTRACT 

With the development of level 3 AVs, drivers can now disengage from the driving task 

for extended periods of time. However, drivers are still responsible for the overall safety of their 

drive. Moreover, when drivers are not engaged in their monitoring task, they lose situational 

awareness. This leaves drivers vulnerable when they have to retake control from the AV. This 

research looks to advance the development of camera-based driver monitoring systems that 

measure situational awareness. In addition, this research examines the effect of adaptable 

warning systems on driver situational awareness and takeover performance. 

In this study, we use situational awareness as ground truth to compare adaptable warning 

systems that reengage drivers in the monitoring task. Camera-based driver monitoring systems 

that measure gaze behavior can be used to adapt warning systems. Twenty-four participants split 

into three groups were asked to drive for approximately 40 miles in a level 3 AV simulator while 

completing a visual-manual secondary task. During the drive, participants experienced four 

events in which they had to disengage from the secondary task and take back control from the 

AV. Two interface designs based on gaze behavior were compared to a baseline warning system. 

The Attentional Maintenance group was given an alert throughout the drive after a fixed amount 

of time in which their gaze was directed away from the road. The State-Contingent Takeover 

group was given an alert only before takeover events after a fixed amount of time in which their 

gaze was directed away from the road. Results show that attentional maintenance alerts can 

increase situational awareness and takeover response time during automation failure. Future 

research to increase situational awareness is discussed in terms of advancements in cognitive 

control and bilateral communication between the driver and the AV.  
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PUBLIC ABSTRACT 

Drivers in automated vehicles (AVs) have a tendency to look away from the road and 

driving environment in favor of other tasks such as texting. With the development of highly 

automated vehicles, drivers can now take their hands off the wheel and eyes off the road for 

extended periods of time. This leaves drivers vulnerable if the AV fails. However, drivers are 

still responsible for the overall safety of their drive. Recent developments in camera-based driver 

monitoring systems can be used to help drivers safely take back control during automation 

failure.  

In this study, we split drivers into three different groups. Each group was assigned a 

warning system. Two groups received alerts from the camera-based driver monitoring system 

based on their gaze behavior. The Baseline group did not receive alerts based on their gaze 

behavior. The Attentional Maintenance group was given an alert throughout the drive after a 

fixed amount of time in which their gaze was directed away from the road. The State-Contingent 

Takeover group was given an alert only before takeover events after a fixed amount of time in 

which their gaze was directed away from the road. Results show that attentional maintenance 

alerts can improve awareness of the driving situation and response time during automation 

failure.  
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CHAPTER 1 – INTRODUCTION 

On a clear, dry day in May, 2016, in Williston, Florida, a Tesla collided with a tractor-

trailer, killing the Tesla driver. This was the first death in the U.S. by an automated vehicle (AV). 

The National Transportation Safety Board (NTSB) examined the data to determine the potential 

causes. They found that the Tesla was operating in Autopilot mode, which includes adaptive 

cruise control and lane-keeping systems. Lane-keeping systems keep the car within its lane of 

travel. Adaptive cruise control maintains a specific distance away from a lead vehicle by 

applying brakes and accelerating/decelerating to a set cruise speed when there is no obstruction 

in front of the vehicle. In addition, the instrument panel shows icons that represent activity levels 

of the adaptive cruise control and lane-keeping systems. However, on this occasion, the Tesla’s 

sensors were not able to detect a white tractor trailer against a bright, sunny background (NTSB, 

2017). More importantly, the driver was rarely engaged in the driving task according to the 

vehicle performance data. The data showed that for the 37 minutes Autopilot was active, the 

driver applied torque on the steering wheel for only a total of 25 seconds. There was no driver 

interaction with Autopilot, no change in steering angle, and no brakes applied for 1 minute 51 

seconds before collision, which suggests the driver may have been distracted.  

More recently, another Tesla in Autopilot mode crashed on March 23, 2018 in Mountain 

View, California, which also resulted in the death of the driver. The National Transportation 

Safety Board released a preliminary report that cited the driver was inattentive according to the 

crash data. Autopilot mode was engaged for approximately 19 minutes before crashing into an 

impact attenuator (NTSB, 2018a). Although the driver had his hands on the wheel for 34 seconds 

of the 60 seconds prior to the crash, the driver did not have his hands on the wheel during the 6 
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seconds before impact. The Tesla increased speed from 62 mph to 70.8mph within 3 seconds up 

to the time of impact and no pre-crash braking or evasive steering movement was detected.  

In both these crashes, it is unclear whether the driver was engaged in a non-driving 

related task. It is possible that automation of the driving task led to disengagement from safe 

driving behavior and monitoring complacency, making it much more difficult for the drivers to 

take back control during these hazardous situations.  

Poor monitoring behavior due to complacency was more clearly captured the night of 

March 18, 2018 in Tempe, Arizona when a distracted driver in a highly automated Uber struck a 

woman walking her bicycle across the street. This was the first ever pedestrian death involving 

an automated vehicle (NTSB, 2018b). It was a pitch-black night and the in-vehicle video showed 

the driver looking away from the road toward the self-driving system interface. According to 

Uber, the self-driving system relies on an attentive operator to monitor the system’s interface as 

well as to intervene if the system fails to perform appropriately. The driver engaged in the 

steering wheel less than a second before impact and began braking less than a second after 

already hitting the woman walking her bicycle. It appears that because automation was 

responsible for the majority of the driving task, the monitoring job of the driver became more 

difficult. 

Tomorrow’s vehicles will increase the monitoring responsibilities of drivers as driving 

tasks become more automated. The Society of Automotive Engineers (SAE) outlines the five 

levels of vehicle automation shown in Table 1, which highlight the changing roles as automation 

increases. Level 1 AVs control either lateral or longitudinal tasks such as cruise control, but 

never both simultaneously. Level 2 AVs, such as the Tesla in Autopilot mode, execute both 

lateral and longitudinal control and allow for temporary hands-free driving, which can be 
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immediately disengaged upon the driver’s request. Unlike level 3 and higher, in level 2 AVs the 

driver is solely responsible for detecting and responding to objects and events. Human factors 

engineers are now working to understand system requirements to implement level 3 automated 

vehicles.  

 

Table 1. Levels of Automated Vehicles adapted from SAE (2018). 

Level Name Narrative Definition Lateral and 

Longitudinal 

Vehicle 
Control 

Monitoring of 

Driving 

Environment 

Fallback 

Controller of 

Driving Task 

ODD/System 

Limits 

0 No 

Automation 

The performance by the driver of the 

entire driving task even when enhanced by 

active safety systems 

Driver Driver Driver N/A 

1 Driver 
Assistance 

The sustained and ODD-specific 
execution by a driving automation system 

of either the lateral or the longitudinal 

vehicle motion control subtask of the DDT 

(but not both simultaneously) with the 

expectation that the driver performs the 
remainder of the DDT. 

Driver and 
System 

Driver Driver Limited 

2 Partial 

Driving 

Automation 

The sustained and ODD-specific 

execution by a driving automation system 

of both the lateral and longitudinal vehicle 
motion control subtasks of the DDT with 

the expectation that the driver completes 

the OEDR subtask and supervises the 

driving automation system. 

System Driver Driver Limited 

3 Conditional 
Driving 

Automation 

The sustained and ODD-specific 
performance by an ADS of the entire DDT 

with the expectation that the DDT 

fallback-ready user is receptive to ADS-

issued requests to intervene, as well as to 

DDT performance- relevant system 
failures in other vehicle systems, and will 

respond appropriately. 

System System Driver Limited 

4 High 

Driving 

Automation 

The sustained and ODD-specific 

performance by an ADS of the entire DDT 

and DDT fallback without any expectation 
that a user will respond to a request to 

intervene. 

System System System Limited 

5 Full 

Driving 

Automation 

The sustained and unconditional (i.e., not 

ODD- specific) performance by an ADS of 

the entire DDT and DDT fallback without 
any expectation that a user will respond to 

a request to intervene. 

System System System Unlimited 

 

Because level 3 AVs free drivers from the responsibility of detecting objects and events, 

the role of the driver changes from level 2 to level 3. In level 3 and higher AVs, such as the 

Cadillac when Super Cruise is engaged, automation is sustained long enough to complete the 
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driving task within its operational design domain (ODD). The driver is not responsible for 

monitoring the environment within the ODD. The ODD is defined as operating conditions under 

which a given driving automation system, or feature thereof, is specifically designed to function. 

This includes, but is not limited to, environmental, geographical, and time-of-day restrictions, 

and/or the requisite presence or absence of certain traffic or roadway characteristics. For 

example, the Cadillac Super Cruise, a level 3 AV, should not be used when lane markings are 

poor, in tunnels or construction zones, or during adverse weather conditions such as rain or 

snow.  

Under certain conditions in level 3 AVs, the driver can remove his hands from the wheel, 

his feet off the pedals, and his eyes from the road for extended periods of time.  When the AV 

falls outside its ODD, automation should prompt the driver who is then expected to serve as the 

fallback controller. To prompt the driver in a level 3 AV, NTSB suggests using eye tracking 

technology (NTSB, 2017).  They argue that because drivers in level 3 AVs have their hands off 

the wheel for extended periods of time, a system that uses the steering wheel to monitor the state 

of the driver is highly ineffective. In order to prompt the driver in a level 3 AV, driver 

monitoring systems that use head and eye tracking to measure drivers’ attention allocation are 

better equipped to transition inattentive drivers to take back control from automation. For 

example, when the Cadillac Super Cruise is in its ODD, the user interface lets drivers know 

when they can engage automation. Similarly, when Super Cruise exits its ODD, the vehicle 

prompts the driver to reengage manually. In addition, Super Cruise uses a small camera equipped 

with infrared technology to track the driver’s head position. If drivers take their eyes off the road 

for too long, the system gives a series of warnings that increase in intensity until the driver takes 
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back manual control from automation. The Super Cruise driver monitoring system is designed to 

keep drivers engaged in the monitoring task. 

It is important to note the difference between a level 3 and level 4 automated vehicle. A 

level 4 AV, such as the self-driving Uber, does not require the driver to take back control under 

any circumstances. Although a level 4 may request the driver to intervene if it falls outside its 

ODD, there is no expectation that drivers will respond to this request unless they choose to 

operate the vehicle manually.  Level 4 AVs serve as their own fallback controller when they fall 

outside their ODD and therefore are expected to take safe action if the driver chooses not to 

intervene. Because drivers are not expected to intervene unless they choose to, drivers’ 

monitoring expectations are toward the AV itself rather than the road. For example, the Uber 

driver was advised to monitor the diagnostic messages that appeared on an interface and not 

necessarily the environment.  

Takeover situations in level 3 AVs are unique because drivers are held fully liable even 

though they disengage from physical control. During transfer of control from automation to 

driver in a level 3 AV, the system goes through a mandatory transition process that requires the 

driver to be capable of switching from their previous task to manual control when prompted.  

This is known as an automation-initiated driver in control transition and will be referred to as 

“takeover” for the rest of the paper (Lu and colleagues, 2016). However, according to the SAE 

(2018), the driver does not need to supervise a level 3 advanced driving system within its ODD, 

even though it may fail. The discrepancy between AV limitations and the driver’s understanding 

of those limitations creates confusion as to the driver’s role. Moreover, the varying conditions 

that fall outside of the ODD for level 3 AVs can complicate a driver’s understanding of the 

ODD. The mismatch between what AV designers expect of the driver and what the drivers 
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believe their AV is capable of can lead to situations in which awareness needed to safely 

takeover is inadequate. Nevertheless, properly designed and transparent AVs that adapt to a 

driver’s behavior may allow drivers to safely engage in secondary tasks while maintaining 

necessary situational awareness.  

Maintaining good situational awareness while driving requires the driver to monitor 

objects and events such as traffic patterns, construction, and weather. The driver forms a 

dynamic mental representation of the driving environment (i.e., a mental model), that allows 

them to perceive critical changes, make decisions, and execute responses. Endsley (1988) 

defined situational awareness as “the perception of the elements in the environment within a 

volume of time and space, the comprehension of their meaning, and the projection of their status 

in the near future.”  As seen in Figure 1, level 1 situational awareness reflects a driver’s 

perception of the elements such as other vehicles and pedestrians. Level 2 reflects a driver’s 

comprehension of those objects’ movements and intentions. Finally, level 3 reflects drivers’ 

ability to predict the future state of their vehicle and other vehicles/pedestrians based on previous 

and current information. Each level builds on top of the other. Level 1 failures cause drivers to 

develop uninformed meanings of situations due to missing information, which may lead to an 

inaccurate prediction of a dangerous outcome. Even if drivers maintain level 1 situational 

awareness, level 2 failures can occur if a driver is not able to comprehend the significance of the 

changes in space and time. Level 2 failures also lead to a failure to correctly predict unfolding 

situations. Even when a driver may have a firm understanding of their environment, level 3 

failures may unfold when drivers inaccurately predict the outcome of changes in the 

environment. Failures in any of the levels of situational awareness can lead to unsafe decision 

making.  Therefore, higher levels of situational awareness are necessary for optimal decision 
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making while driving. Drivers who do not safely monitor the environment lack perception of 

objects and events and thus overall situational awareness, which can lead to poor AV takeover 

performance. These drivers are referred to as “out of the loop” drivers. 

 

Figure 1. Human Control System in Automated Driving 

 

When drivers are out of the loop, driver situational awareness and human-system 

interaction is limited (Endsley and Kiris, 1995). The concept of the loop originated from Control 

Theory and more generally refers to components of control and their connections. As shown in 

figure 1, these elements include environmental, cognitive, and behavioral mechanisms and 

connections that work to achieve a goal state (Merat and colleagues, 2018).  Drivers that are in 

the loop are in physical control of the vehicle and are monitoring the driving situation (Merat and 

colleagues, 2018). Drivers that are on the loop are not in physical control of the vehicle but are 

monitoring the driving situation (Merat and colleagues, 2018). Finally, drivers that are out of the 

loop are neither in physical control or monitoring the driving situation, or they are in physical 

control but not monitoring the driving situation (Merat and colleagues, 2018).  

In order to design level 3 AVs that promote situational awareness and keep drivers on the 

loop, human factors engineers need to understand the type of driver behavior that is required to 

Leve 3 SA

Leve 2 SA

Driving
Environment

Human Senses Leve 1 SA Decision Action
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enhance situational awareness. However, there is a dearth of data on how drivers physically 

behave behind the wheel of an AV. To better understand whether Autopilot mode appropriately 

supports drivers’ situational awareness, Banks and colleagues (2018) collected video 

observations as part of an on-road study using a Tesla Model S. The study showed that drivers 

displayed behaviors indicative of automation complacency and over-trust, such as turning around 

in their seat or drinking coffee for extended periods of time without their hands on the wheel. 

Drivers were happy to engage in non-driving related tasks because they felt comfortable enough 

with their hands off the wheel for extended periods of time.  Another study by Buckley and 

colleagues (2018) had participants drive a level 3 AV in a simulator. The experiment involved 

five transfer of control scenarios: missing line markings, presence of a police vehicle (parked on 

the roadside), traffic light failure, police-attended crash, and no obvious reason. After the 

experiment, participants were given a survey to understand how they perceived their role as a 

driver. Many of the participants saw the AV as a way to engage in secondary tasks, drive 

impaired, or as a means to relax (Buckley and colleagues, 2018; see also Payre and colleagues, 

2014).  

Even when drivers of highly automated vehicles do not engage in a non-driving related 

task their takeover performance can suffer.  Merat and Jamson (2009) used a simulator to 

compare manual drivers’ performance to automated drivers’ takeover performance during critical 

events. Automated mode controlled both lateral and longitudinal movements. This was followed 

by a questionnaire for automated drivers to see how they felt about the automated system. 

Overall, drivers had positive opinions of the automated system and in-vehicle interface and 

driver response to all critical takeover events was found to be 1.5 seconds slower on average in 

the automated driving condition compared to manual driving condition. In another study, Strand 
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and colleagues (2014) used a simulator to compare a vehicle with only longitudinal automation 

(semi-automated) to a vehicle with both longitudinal and lateral automation (highly automated). 

The group engaged in highly automated driving had slower braking reactions than those driving 

a semi-automated vehicle. The highly automated driving group also had shorter minimum times 

to collision, which is defined as “the minimum time until a collision between the simulator car 

and a vehicle in front given that the vehicles maintained their current speed” (Strand and 

colleagues, 2014). These controlled studies, as well as the real-world crash examples, suggest 

that as the level of automation increases, takeover performance deteriorates.  

As the driving task becomes increasingly automated and drivers assumes less control, 

drivers’ roles change and their responsibility to re-engage when prompted becomes more 

challenging. In order to design AVs that promote higher levels of situational awareness and keep 

drivers on the loop, human factors engineers need a better understanding of the limits of humans’ 

monitoring the driving task. Properly designed AVs that can detect the state of the driver and 

provide constructive feedback can help increase driver situational awareness in automated 

vehicles. In this study, we examine how camera-based driver monitoring systems that detect the 

direction of a driver’s gaze can help reinforce monitoring behavior as well as enhance situational 

awareness and takeover performance in level 3 AVs. 
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CHAPTER 2 – BACKGROUND AND LITERATURE REVIEW 

Humans Monitoring Automated Tasks 

 Throughout time, humans have taken note of ways to complete tasks more efficiently. 

For example, in the 1900s mechanical engineer Frederick Winslow Taylor found that the amount 

of coal shoveled by workers increased as the weight of the shovel and required movements of the 

workers decreased. However, Taylorism was highly criticized for methods that portrayed 

humans as machines, ignoring fatigue, safety, and the well-being of workers (Sheridan, 2002). 

Before World War I, Human Factors was concerned with using the field of psychology to choose 

and train the right people for the job (Fitts, 1947). However, the demands of war shifted the 

perspective towards the design of equipment. Engineers studied the design of knobs, levers, and 

gauges in fighter plane cockpits to minimize workload and errors and to enhance pilot 

performance.  Today, the rise of computers and automation shifts the use of psychology and the 

focus of Human Factors research toward an understanding of the way in which our minds 

perceive, comprehend and act on information and ways to enhance human monitoring behavior. 

One very important problem, the antithesis to optimal human performance, is the problem of 

vigilance decrement, which leads to a degradation of monitoring behavior and information 

perception. Vigilance decrement can be measured as a decrease or failure in physiological or 

psychological readiness to react to a given task over a period of time (Mackworth, 1948). 

Although vigilance decrement can be minimized, as long as we remain human the problem will 

persist.  

The limits of human monitoring have been apparent in a number of other domains 

besides driving. On June 10, 1995 the Royal Majesty cruise ship ran aground 17 miles from 

where the watch officers thought the vessel was located (NTSB, 1995). Evidence showed that the 
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satellite-based position data was interrupted about an hour after the ship left its port. Although 

there were three crew members to monitor the navigation through independent sources, they all 

seemed to over rely on the automated navigation system because the navigation system had 

proven to be highly reliable and accurate over the previous 3.5 years. Based on the crew’s 

testimony, the navigation system was believed to be superior to other onboard systems. Because 

the master did not ask for deliberate cross checks between the GPS and the Loran-C, or make 

any comparisons himself, the National Transportation Safety Board concluded that the master’s 

methods for monitoring the progress of the voyage did not account for the technical capabilities 

and limitations of the automated equipment. The grounding resulted in $7 million in damages. 

Nevertheless, properly designed and transparent automation should help operators understand 

their roles and the limitations of the overall system.   

In order for drivers to understand situational limitations of the overall human-AV system, 

automation must help engage drivers in the monitoring task. Studies from rail transportation also 

look to understand vigilance decrement and ways to engage operators of automated systems in 

the monitoring task. Using a simulated, semi-automated rail control, Rees and colleagues (2017) 

conducted a 45 minutes study where participants monitored representations of railway lines on a 

screen and identified whether the planned routes were correct. The control group had no break 

for the entire 45 minutes while the other groups had 5-minute breaks after 20 minutes in which 

they undertook a music listening task, a music watching task, no task at all or a task of their 

choosing. Results showed that compared to the control group, the response latency to misrouted 

trains was lower for all other break conditions and that any activity that drew operators’ attention 

from the primary rail control task enabled improvements in performance compared to the control 

group. In the context of driving, this study suggests that drivers may need to disengage from the 
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monitoring task for at least short periods of time to maintain a high level of monitoring 

performance. However, because most automation takes drivers out of the loop, maintaining 

driver engagement, especially during long, straight, monotonous routes, becomes difficult.  

Vigilance decrement can affect drivers within short periods of time and has been 

observed in nuclear power plant operators as well. Nuclear power plant operators have to 

constantly monitor the state of the plant through an array of control panels and computer 

displays. Reinerman Jones and colleagues (2016) had nuclear power plant operators perform 

checking, detection, and response implementation tasks. The checking task required a one-time 

inspection of an instrument to verify that it was in a correctly specified state. The detection task 

required participants to correctly locate a control and then continuously monitor that control 

parameter for identification of a specified change. There were twelve random changes per minute 

totaling 60 changes per detection task. The response implementation task required participants to 

correctly identify a control, and then open or shut a switch on that control. The study showed that 

vigilance decrement and higher subjective workload was induced during the 5-minute detection 

tasks.  

Because vigilance decrement has been observed in a variety of domains from shipping to 

nuclear power plants, there have been countless studies to understand why humans are poor 

monitors of automation. These studies started during WWII when radar detection required pilots 

to stay vigilant in case of enemy attacks, and pilots were required to monitor screens for 

prolonged periods of time. It was suspected that working efficiency was deteriorating due to 

overlong spells at the radar screens. However, the elusive nature and complexity of the human 

mind makes human monitoring and vigilance decrement a challenge to study. Although solutions 

to the problem exist, they are never perfect, nor are the variety of theories used to address the 
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problem. Nevertheless, countless academics within interdisciplinary fields have conducted 

studies to inch our way toward a deeper understanding of vigilance in the context of human-

automation interaction. In terms of automated driving, because vigilance decrement leads to low 

situational awareness and poor takeover performance, understanding these mechanisms are 

essential for developing safe level 3 AVs. 

The factors that cause vigilance decrement in level 3 automated vehicles can be 

understood using an older study conducted by Yerkes and Dodson (1908). Their law described 

the relationship between stimulus strength and habit-formation for tasks varying in difficulty (see 

Figure 2). Yerkes and Dodson’s experiment consisted of a black box and a white box in which 

mice were to discriminate between. To see how perception of a task changes the act of vigilance, 

electric shocks of varying intensity were used to study the rate of learning the mice went 

through. If the mice went into the white box, they received a shock whereas if they entered the 

black box they received no shock. They observed that the learning rate was the lowest when very 

low intensity shocks and very high intensity shocks were applied, with moderate intensity 

leading to the highest rate of learning. Moreover, they found that the optimal shock intensity 

depends on the level of difficulty of the task.  In terms of level 3 automated vehicles, providing 

drivers with optimal stimuli may help reinforce monitoring behavior. Furthermore, stimulus 

strength that is too low or too high can lead to inefficient or poor reinforcement of monitoring 

behavior. Nevertheless, humans are much more complicated and researchers were still not sure if 

these changes resulted from psychological concepts such as punishment, motivation, arousal, 

anxiety, or stress. Their law seemed to reflect a basic relationship between a variety of 

psychological variables. In addition, their model varies drastically depending on the type of task. 
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A more detailed explanation of how different stimuli and tasks relate to vigilance decrement was 

needed. 

 

As research on pilot vigilance decrement advanced so did the definitions used to describe 

vigilance. Fraser (1957) conducted a series of experiments to test the effects of multi-day 

prolonged flights, differences between nighttime and daytime flying, differences between 

continuous and intermittent flying, and increasing heat stress on pilots. Based on his studies, 

Fraser differentiated vigilance into two types. The first type occurs when subjects must observe 

infrequent and significant signals appearing amongst frequent and insignificant signals over a 

long period of time. Fraser defines the second type as vigilance required for subjects to observe 

very frequent stimuli in a short period of time. Although vigilance decrement may be observed in 

the second type, there is no change in reaction time. It may be described that the first type is 

related to fatigue, a physical form of vigilance decrement. The second type is related to stress, a 

cognitive form of vigilance decrement. Nevertheless, cognitive stress can eventually lead to 
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Figure 2. Yerkes-Dodson inverted-U law. 
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physically visible fatigue (Hancock and Warm, 1989). In fact, vigilance 1 may just be an 

exaggerated version of vigilance 2 (Fraser, 1957). Furthermore, the two types of vigilance also 

reflect Yerkes-Dodson’s law in which type 1 requires vigilance in the context of a weak stimuli 

load and type 2 requires vigilance during a heavy stimuli load. Both lead to vigilance decrement 

and suboptimal learning rates. Nevertheless, because driving is already a satisficing task, the 

problem of vigilance decrement in automated vehicles thus far seems to be a type 1 vigilance 

problem, in which hazardous situations are infrequent and the signals from the environment are 

constantly unique and changing over a long period of time.  

Type 1 vigilance and the standard for future vigilance tasks originated from a study by 

Mackworth (1948). Mackworth conducted one of the first vigilance experiments in which 

subjects watched the arm of a clock move a certain distance. At irregular intervals, the clock 

would go through a double jump, and the participants were to identify when these irregular 

movements took place. Only during the practice period did participants receive feedback of their 

results. After a 2-hour experimental session, Mackworth found that the number of signals 

participants began to miss dramatically increased after the first half hour and that lapses in visual 

perception become more frequent after a certain period of time. Using Conditioned Response 

theory similar to Yerkes and Dodson, Mackworth went one step further and attributed the 

observed vigilance decrement in their study to a lack of reinforcement due to an absence of 

immediate feedback of results.  His study highlights the fact that human attention deteriorates 

over time and that monitoring performance becomes worse without reinforcement feedback 

based on performance. Therefore, in order to maintain a driver’s situational awareness, level 3 

AVs need to provide feedback to the driver based on their performance.  Nevertheless, 

Mackworth’s results still do not explain why different cognitive tasks are more vulnerable to 



www.manaraa.com

16  

 

vigilance decrement than others. Understanding what factors hold the attention of drivers in level 

3 AV needs further examination. 

When people take up under arousing tasks, it is not a matter of sufficient resources but 

how subjects allocate these resources to other thoughts and tasks that are more stimulating. 

Comparatively, drivers in automated vehicles have the resources needed to engage in monitoring 

responsibilities just as they would while driving manually, yet the nature of the monitoring task 

and the reduction of physical control lead to under arousing stimuli and a lack of feedback. To 

prevent drivers from engaging in non-driving related tasks, not only do level 3 AVs need to 

provide performance feedback to the driver, they need to activate mechanisms to sustain effortful 

attention.  

 To better design level 3 AVs that help maintain driver situational awareness and enhance 

driver takeover performance, methods that sustain and extend effortful attention may prove 

useful. As several studies have already mentioned, performance feedback deters vigilance 

decrement. In addition, Massar and colleagues (2016) used theories from Effort Allocation 

models, more commonly used in economics, to better understand other aspects of attentional 

control.  Participants performed sustained attention tasks under reward conditions of either 0, 1, 

or 10 cents for fast responses as well as a discounting task to estimate the subjective value 

assigned to monetary reward. The sustained attention task required participants to press a button 

as quickly as possible upon appearance of a target. Participants were rewarded if their response 

was faster than the median. For the discounting task, participants were offered a choice of a low 

reward for short durations of the vigilance task and a high reward for long durations. After each 

choice, monetary reward for low reward was increased if the long duration option was chosen 

and decreased if the short duration option was chosen. Pupil diameter was also monitored 
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throughout the experiment. Results showed that reward value influenced both task performance 

and the willingness to engage in task performance, which is in line with Effort Allocation 

theories. Pupil size was larger only during rewarded task runs based on good performance but 

not when rewards were provided at random. Furthermore, these results suggest that the 

motivational value of a task significantly increased attentional effort in terms of allocation of 

attention and duration of attention. Similarly, drivers may weigh rewards and risks of 

multitasking while driving at any level of automation. As automation increases, the risks 

involved in disengaging from the monitoring task may appear less likely.  

When automation reduces the physical workload associated with driving, maintaining the 

same level of cognitive workload needed to maintain the physical workload may seem frivolous 

because the requirement of physical control motivates drivers to monitor their environment. 

When automation takes this control away, drivers may lose the motivation to maintain situational 

awareness. In order for drivers to maintain situational awareness in level 3 AVs, designers need 

to implement tasks that stimulate higher levels of cognitive control. In other words, the decisions 

that drivers make involving costs and rewards significantly affect how they distribute their 

attention while the vehicle is in automation.  

An older study by Adams (1961) also looked to understand how decision making affects 

sustained attention. Adams looked towards the activationist hypothesis to provide an operational 

definition of stimulation in terms of environmental and response-produced stimuli. Under the 

activationist hypothesis, human alertness is a function of stimulation level. A semi-automatic air 

defense surveillance task was used for the vigilance experiment with characteristics of visual 

monitoring behavior in complex tasks like those found in other modern semi-automatic systems. 

Stimulation level was defined by the number of visual stimulus sources to be monitored. The 
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study consisted of visual monitoring required in a simulated air defense surveillance task for a 3-

hour period. There were four independent groups that received one of four load/response 

combinations. The two visual loads were expressed as six and thirty-six symbol stimulus sources 

and the two complexity values of response were Detection (D) and Evaluation (E). Detection 

involved finding changes in the environment and pressing the button labeled F. In the Evaluation 

condition subjects were to detect the signal change and also make a four-choice evaluation of the 

symbol on the display and indicate their decision by first pressing either button A, B, C or D, and 

then following it with the buttons for F and the three numbers of the symbol. The subject had to 

decide whether the symbol whose G had changed to F ended in an odd or an even number, and 

whether the symbol was above or below the horizontal line across the center of the display. No 

vigilance decrement was found in terms of percent of signals correctly detected. Nevertheless, 

response latency declined significantly for groups that had simple response conditions but not for 

groups with complex response requirements. The effects of waning vigilance, as revealed in an 

increase of response latency, was associated only with the Detection condition, not the 

Evaluation condition. Results suggest that although the information rate may not necessarily 

affect vigilance decrement, response-produced stimulation has a significant effect on the state of 

alertness. In terms of effort allocation, decision making seems to increase stimulation levels by 

providing motivational value to engage in the task. Therefore, when drivers are not involved in 

the decision-making process, their monitoring performance can suffer due to a lack of motivation 

and arousal. Simply giving drivers information without a purpose to use that information does 

not provide drivers the proper stimulation or meaning needed to stay on the loop.  

Many years later, Adams results were corroborated by Endsley who directly measured 

the effect of passive and active information processing on situational awareness. As previously 
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mentioned, Endsley defined situational awareness as “the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning, and the 

projection of their status in the near future.” Endsley’s theory allowed for the development of a 

protocol to measure and compare different tasks and system designs in order to objectively 

choose systems that result in higher vigilance. To objectively compare human situational 

awareness in different systems, Endsley derived and used a method referred to as the Situational 

Awareness Global Assessment Technique (SAGAT). The basic idea of SAGAT is that any 

simulation can be frozen for no more than 5 minutes. During the freeze-probes, participants are 

asked questions that directly relate to different levels of their situational awareness. Because their 

answers can be compared to the simulation, this is an objective measurement of situational 

awareness and can also be compared to other participants and between groups.  Endsley and 

Kiris (1995) used SAGAT to further explore the loss of situational awareness during an 

experiment in which participants monitored an automobile navigation task in a simulator. A 

paragraph of text describing a decision task was then presented. The subject's task was to 

observe the presented scenarios and decide on one of three possible actions. In the manual 

condition, probabilities of the best action were not given. The decision support system group was 

given probabilities for each action in terms of the best performance. The consensual AI group 

was given the best action and participants could either accept or reject that action. In the 

monitored AI group, the best action would be carried out automatically but could be overruled by 

the subject if desired. The fully autonomous group was not able to intervene or make decisions in 

any way. Results showed that increasing the level of automation and shifting the subject from 

active to passive information processing resulted in loss of level 2 situational awareness. Endsley 
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refers to this performance decrement from increasing automation as the out-of-the-loop problem 

and directly linked it to a loss of manual skill and awareness of the state and system processes.  

The importance of decision making from the previous studies can also be conceptualized 

using Merat and colleagues’ (2018) multi-level driving control model. Merat and colleagues 

argue that there are two potential ways drivers of level 3 AVs transition from in the loop to out 

of the loop. First, transferring manual control from the driver to automation naturally reduces 

situational awareness by eliminating physical control and the multi-sensory cues used for 

physical control (Merat and colleagues, 2018). Because the driver does not need to control the 

vehicle using the steering wheel, modes of feedback to the driver, such as proprioceptive 

feedback, are also eliminated in level 3 AVs. Nevertheless, the driver can still be considered on 

the loop. However, being fully in the loop and out of the loop is viewed as a spectrum (Merat 

and colleagues, 2018). As momentum shifts from the driver being in the loop and engaged in the 

driving task to on the loop, the momentum appears to continue. The momentum then pushes 

drivers out of the loop and towards other loops. In other words, when drivers are not in the loop 

they have a tendency to engage in other tasks. This brings up the second way and most important 

reason taking away manual control reduces situational awareness. As shown in Figure 2, to 

require manual control means that drivers must operate and monitor on a scale from milliseconds 

to seconds. All levels of situational awareness are involved in each of its three control loops 

(Merat and colleagues, 2018). Moreover, if the situational awareness box in Figure 1 is replaced 

by the control system in Figure 3, we see that when the need for the sampling rate associated 

with lateral and longitudinal movement is eliminated so is the need to make decisions at this rate. 

When decisions are not needed at a higher sampling rate, drivers tend to allocate their attentional 

resources towards other tasks that may be more motivating or stimulating.  
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Although there are a variety of theories that attempt to describe the underlying concepts 

of vigilance, there is no single theory that can be applied to every system and situation. 

Nevertheless, providing performance feedback and increasing decision making capabilities of 

driver’s in level 3 AVs may help reinforce monitoring behavior and enhance situational 

awareness. The frequency at which these decisions must be made also affects situational 

awareness. In addition, Endsley’s methods allow researchers to compare system designs and 

choose systems that deter vigilance decrement by enhancing situational awareness. 

Understanding the strengths and weaknesses of the aforementioned studies and their underlying 

theories will better equip human factors engineers to design systems that prevent vigilance 

decrement and enhance situational awareness in highly automated vehicles. 

Human-Machine Interaction and Transfer of Control 

 As we begin to understand how humans behave while monitoring the driving task in a 

highly automated vehicle, naturally we ask if there are ways to optimize driver behavior as well 

as create adaptable human-vehicles systems that are robust in times of failure. Based on previous 

vigilance decrement research, properly motivating or reinforcing the driver to allocate attention 
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Figure 3. Monitoring inherent to multi-level control in driving (Merat and colleagues 2018). 
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toward the driving task can help maintain situational awareness. The type of feedback continues 

to appear as a prevalent factor responsible for reinforcing sustained attention and preventing out 

of the loop performance (Mackworth, 1948; Massar and colleagues, 2016; Endsley and Kiris, 

1995). Because humans are poor monitors of automation, AVs that properly provide feedback to 

promote monitoring behavior and increase situational awareness can help enhance takeover 

performance.  

Wickens (1979) observed the importance of feedback when he measured responses of 

participants engaged in single task computer-controlled trials. Participants were required to 

engage in a tracking task with their right hand and return the system to normal by clicking a 

button if a change was detected. The tracking target followed a random path and disturbances 

happened at random intervals as well. The step disturbances would also change the dynamic of 

the control stick in the manual condition. Thus, in manual mode, disturbances were not only 

detectable with visual information but also proprioceptive information coming from both joint 

position and muscle-tension related receptors. Each trial lasted about 150s. Wickens found that 

detection performance in the manual group was faster but slightly less accurate than the 

monitoring group. Wickens attributed the fast reactions in the manual group to proprioceptive 

feedback. A lower detection accuracy in the manual group was attributed to the fact that slow 

gains or small disturbances are less sensitive to proprioceptive input because humans are visually 

dominant. This study provides evidence that having more than one mode of feedback can help 

humans respond more quickly to automated system failures.  

Nevertheless, human factors engineers not only need to think about the most effective 

ways to convey information but also how people feel about feedback from automation. 

Inadequate feedback may lead to over reliant behavior. On the other hand, too much feedback 
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may cause an increase in workload as well as an under reliance on automation. Parasuraman and 

Riley (1997) refer to these cases as automation misuse and disuse, respectively. Because most 

automated vehicles appear highly reliable, automation complacency and automation bias will 

most likely lead to failures of monitoring and reduced situational awareness. Automation 

complacency can be operationally defined as poorer detection of system malfunctions under 

automation than manual control, and automation bias can be defined as the outcome of people’s 

reliance on an automated decision aid as a heuristic replacement for vigilant information seeking. 

These effects are found in both naïve and expert participants, occur under conditions of multiple-

task load, cannot be overcome with simple practice, and have been found to relate to allocation 

of attentional resources (Parasuraman and Manzey, 2010).  

Because reliable automation leads to poor situational awareness and takeover 

performance, varying the reliability of automated may help enhance human-vehicle performance. 

Parasuraman and colleagues (1993) had participants engage in a 2 day flight simulation task for a 

total of 1 hour each day divided into 2 sessions. The overall task included monitoring, tracking, 

and fuel-management subtasks. Only the monitoring subtask was automated. Under normal 

operating conditions, the automated monitor detected and corrected the system malfunctions. 

However, from time to time the automation failed to detect a malfunction and the operator was 

responsible for detecting this failure. All groups experienced 16 failures every 10 minutes. The 

two groups tested were variable and constant reliability groups and each of these groups were 

split into two sub-groups. Automated monitoring for the two variable sub-groups alternated 

every 10 minutes between low reliability, in which the automated system would correct 9 of the 

16 malfunctions, or high reliability, which corrected 14 of the 16 system malfunctions. The 

constant reliability sub groups consisted of one group which performed that task under low 
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reliability the entire time and one which performed the task under high reliability. Parasuraman 

found that constant automation reliability at both low and high failure rates did not properly 

allocate the operators attention toward the monitoring task whereas variable automation 

reliability improved performance. The signal rate did not seem to be a factor that influenced 

allocation of attention whereas signal consistency had significant affects. Results also suggest 

that a variable reinforcement schedule of automation failures led to the enhancement in 

performance. Unfortunately, the enhancement of performance may come from a lack of trust in 

automation, which could lead to disuse during implementation.   

In light of cases of misuse and disuse of automation, research on calibration of trust has 

gained much attention within the domain of automation and beyond. Trust can be defined as an 

attitude that shapes one’s mental model of how well an agent can carry out a task in certain 

situations to achieve a goal (Lee and See, 2004). In order to trust in general, one must decide to 

forgo control and be willing to put themselves in a vulnerable or risky position. In a review of 

research on trust in automation, Lee and See (2004) urge for design of automation that can 

appropriately calibrate a person’s trust in automation with the automation’s capabilities, or 

trustworthiness. They argue that good calibration, high resolution, and high specificity of trust 

that is based on motives, rather than reliability, can lead to proper use of automation. 

Furthermore, Lee and See (2004) note that trust is an effective response and an emotion that can 

guide people’s attention and decision making. Adaptive function allocation that transfers control 

based on human performance may provide a more practical solution to properly calibrate trust 

and update an operator’s memory of the automated task than variable automation.  

To begin understanding adaptive function allocation, one must look into theories that 

consider different levels of human control. Broadbent (1977) emphasizes that human information 
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processing takes place on multiple levels simultaneously with different processors. To test this 

hypothesis, Broadbent gave each of his subjects the task of controlling transportation in a city by 

either altering time intervals between buses entering the city or altering the amount charged for 

parking in the city. The subjects were given an initial stable state in which circumstances 

demanded a change in load and free parking spaces in order to return to the stable state. After 

each situation, participants were asked how much to increase the time between buses and raise 

the parking fee to drive the bus load and number of empty parking spaces to a desired target. 

After each decision made by the participants, they were given the outcome of their decisions and 

asked to make another decision until the two target values for bus load and parking spaces were 

reached. Performance in actually controlling the system was judged by the number of trials to 

reach target values. Based on the responses of the participants tested under step and ramp inputs, 

Broadbent found that the simplest control system that models these results is an adaptive 

controller.  

An adaptive controller is one that initially receives an output with large error from the 

lower levels, which causes the upper levels to reduce that error. The dominant activity seems to 

be a transfer of control from lower level processors to higher level processors in which the higher 

level processors eliminate output errors by altering the nature of the lower levels, rather than 

merely supplying them with input.  In Broadbent’s study, we observe that the higher level 

corrects the lower level by modifying the transfer function after every decision based on the 

amount proportional to the error. The lower levels obey different parts of the memory until the 

higher level’s operations are done.  Once the error is completely eliminated, the upper level 

disengages from the lower level. Furthermore, the lower level system continues to produce the 

desired output on its own using the last updated transfer function. This allows the higher level to 
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engage in other purposes. Once this kind of control mechanism has been exposed to a situation 

repeatedly, it will react more rapidly and efficiently. In other words, adjustment of the lower 

level’s transfer function can be thought of as a learning mechanism and once learning has taken 

place, feedback from the upper level is abolished. The upper level is needed only in the stage of 

adjustment. In addition, we can observe that the lower levels react to momentary input whereas 

the higher level operates on a longer time scale as it sets the value of the gain based on the error 

throughout the experiment.  

It is important to note that regardless of the controller in Broadbent’s study, without 

decision making there can be no error feedback and therefore no modification of the transfer 

function. Broadbent argues that humans preoccupied with unrelated tasks when primary tasks are 

automated show open chain behavior running off in the absence of higher level control, which 

becomes clear in response to novel events that need correction of automated errors. Therefore, 

design of automation should carefully introduce decision making as to continuously reengage 

driver’s higher levels of control. Systems that help reengage a driver’s higher level of control, 

even in the absence of error feedback, can help maintain situational awareness and safe driving 

behavior in highly automated vehicles.  

Mouloua and colleagues (1993) conducted one of the first studies that looked at how 

adaptive function allocation may change monitoring behavior and enhance automation failure 

detection. Subjects simultaneously performed tracking and fuel management tasks while the 

system monitoring task was automated. The automation detected and corrected system 

malfunctions but would occasionally fail. Subjects were responsible for detecting any automation 

failure of the system monitoring task. The first study examined two different types of adaptive 

automation. The first type of adaptive automation was model-based and allocated the system 
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monitoring task to the operator during a fixed period of time. The second type was performance-

based and control of the system monitoring task was transferred from automation to operator 

when the operator’s detection rate of automation failures fell below a certain criterion. The 

system monitoring task remained automated the entire time for the control group. Although there 

was not a significant difference between the two types of adaptive automation, Mouloua and 

colleagues found that in general, multiple adaptive changes were able to decrease monitoring 

inefficiencies and sustain overall performance for longer periods of time compared to the control 

group. Further examination of the possible explanations for the improvement in performance led 

Parasuraman and colleagues (1996) to believe that adaptive automation led to an improvement in 

performance because it provided an update of the operator’s memory for the task. Parasuraman 

and colleagues explain that forgetting occurs when a task is automated and that adaptive 

automation, as well as variable automation, help maintain the operator’s mental model of the task 

(Parasuraman and colleagues, 1996). Regardless of the cognitive mechanisms involved in 

optimal human-machine interaction, it is clear that in order to avoid negative consequences of 

automating tasks such as vigilance decrement, adaptive automation and decision making are key 

elements that help properly calibrate trust and reengage drivers in optimal monitoring behavior.  

Driver Monitoring Systems 

In the context of highly automated vehicles, it is important to know whether the driver is 

on the loop or out of the loop in order to design adaptable systems that optimize situational 

awareness. In other words, driver monitoring systems that measure the actual state of the driver 

may also be used to transition the driver into an expected state of behavior. Using situational 

awareness and takeover performance measurements as ground truth, we can test the effects of 

new technologies on attention allocation, safe driving behavior, and overall system performance.  
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Measurements of attention allocation that correlate with situational awareness and 

takeover performance are especially important for highly automated vehicles. Driver inattention 

is described as insufficient, or no attention, to activities critical for safe driving. Therefore, it is 

important to understand when attention is and is not allocated on activities critical for safe 

driving. Multiple resource theory claims that there are multiple resources running simultaneously 

but that these resources are all limited and performance greatly suffers when two stimuli occupy 

the same resource. Because vision is the most dominant and rich source of information for 

humans, situational awareness is most affected by where humans are looking. By measuring 

where humans are focusing their vision, human factors engineers can design level 3 AVs that 

adapt to changes in visual attention to allow for safe transfer of control when AVs fall outside 

their ODD. Nevertheless, because attention is a multidimensional theory like vigilance, there are 

a variety of ways driver monitoring systems can measure how and where attention is occupied.  

Researchers notably differentiate driver monitoring systems that detect inattention into 

two categories: distraction and fatigue. May and Baldwin (2009) conducted a literature review 

and outlined 3 types of driver fatigue. Sleep-related fatigue results from accumulated sleep debt 

and prolonged wakefulness, which is resistant to most intervention strategies. Active task-related 

fatigue and passive task-related fatigue on the other hand are caused by mental overload and 

underload, respectively. These types of fatigue depend on the demands set forth by the driving 

task and/or environment and can be mitigated with properly designed AVs. Many of the 

measurements for active and passive task-related fatigue are similar to measurements of 

distraction and will be discussed in more detail in the following sections.  

Driver distraction can be differentiated between visual distraction and cognitive 

distraction. Liang and Lee (2010) explain that visual distraction reflects demand for visual 
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attention and cognitive distraction reflects shared demand of driving and secondary tasks. 

Cognitive distraction affects driving by disrupting the allocation of visual attention to the driving 

scene and the processing of attended information (Liang and Lee, 2010). There are a variety of 

other sets of driver inattention definitions found in the literature. For example, Koesdwiady and 

colleagues (2017) differentiate cognitive distraction into external, such as auditory distraction, 

and internal, such as mind wandering. Moreover, inattention is not always categorized as 

distraction or fatigue, such as drivers who are under the influence of drugs. Inattention due to 

inexperience has also been classified as its own subcategory (Koesdwiady and colleagues, 2017).  

Because there are a variety of ways to define inattention, there are also a variety of technologies 

used to capture inattention. Driver monitoring systems that can capture a broader definition of 

attention and accurately classify drivers as on the loop or out of the loop will prove to be more 

useful.  

Distraction and fatigue are both abstract concepts still being studied. The main methods 

used by driver monitoring systems to study these concepts include vehicle dynamics, driver 

physiology, driver behavior, and subjective measures (see Koesdwiady and colleagues, 2017; 

Aghaei et al., 2016). However, for the purpose of this study we exclude discussing driver 

monitoring systems that use physiological measures such as heart rate monitoring or 

electroencephalogram because they are too invasive and only used for research purposes. 

Likewise, vehicle dynamics can give valuable information about the state of a driver but are only 

useful for AVs during takeover situations and thus can rarely be obtained from real-world 

scenarios. Subjective measures may also be invasive during real-time driver state detection and 

are only used for highly controlled experiments. The most sophisticated and information rich 

techniques available to measure the state of the driver involve image processing.  In this paper 
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we will focus on camera-based measures of driver behavior because they are noninvasive and 

can capture a variety of out-of-the-loop behaviors in lab settings as well as real-world settings. 

 Although camera-based driver monitoring systems that accurately and consistently 

measure the position of the head and eye in real-time are still in development, it is important to 

understand what measurements can be used and how to use them to detect different states of the 

driver. Doshi and Trivedi (2012) conducted a post-hoc analysis using a stereo-camera-based non-

intrusive commercial eye gaze tracker to differentiate between top-down and bottom-up attention 

shifts in a level 3 AV simulation. Top down shifts in attention are internal shifts uninfluenced by 

any external stimuli vs bottom-up shifts which result from changes in the environment that catch 

a driver’s attention. They found that bottom-up visual cues evoke different eye-head movement 

pattern latencies than top-down, attention shifts. Doshi and Trivedi (2012) found that head 

position seems to be a better indicator of attention than eye position. More specifically, head 

motions prior to gaze saccade indicate top-down processing, which is the same process observed 

prior to lane changes indicating a “task-oriented” attention shift. These findings are highly 

relevant for identifying the state of the driver’s attention. 

 Another study by Yang and colleagues (2018) conducted a post-hoc analysis using a 

camera-based driver monitor to examine gaze behavior during different types of cognitive 

distractions.  In this study participants drove approximately 25 km and were also to engage in 

several cognitively demanding tasks that demanded a range of resources such as long-term 

memory, working memory, and graph-based cognitive strategies. Percent road center (PRC) was 

a measure used to understand gaze behavior and is defined as the percentage of gaze fixations or 

gaze directions falling inside the road center area. Subjective reports of the difficulty of the 

secondary tasks were also conducted. Interestingly, PRC and subjective reports were inconsistent 



www.manaraa.com

31  

 

and may reflect a nonlinear relationship between cognitive loads and cognitive distractions. PRC 

proved to be an effective metric for detecting cognitive distraction, although it was not able to 

distinguish between the different types of cognitive tasks. The study also found that 8-12 degrees 

for the radius of the road center was optimal for detecting cognitive distractions using PRC. 

Yamani and colleagues (2015) studied glance sequences of distracted drivers to compare 

gaze behavior of experienced and novice drivers.  The participants drove in a simulator and 

performed a variety of in-vehicle and out of vehicle tasks such as adjusting the temperature of 

the air-conditioning or searching for a road on a map. The results indicated that the proportion of 

glances longer than 2s away from the road among untrained drivers was almost double the 

number of such glances for the trained drivers. Moreover, the researchers found that  

the duration of off- road glances varies as a function of their order in a sequence of glances. 

These results offer important insights into the visual demands imposed on a driver that can be 

used by driver monitoring systems to classify out-of-the-loop behavior.  

 Louw and Merat (2017) also conducted a post-hoc analysis using gaze distribution to 

identify when a driver is and is not capable of retaking control from automation. Participants 

drove with both manual and level 3 automated vehicles in a simulator and encountered six 

events. Each drive contained two critical events and four non-critical events. The lead vehicle 

would accelerate or change lanes during non-critical events and decelerate during critical events 

resulting in a 3s time-to-collision. To induce varying levels of the out-of-the-loop state during 

the automated drives, participants drove under conditions of no fog, light fog, heavy fog, and 

heavy fog plus a questionnaire task.  Results showed that, during automation, drivers’ horizontal 

gaze was more dispersed than that observed during manual driving. Drivers looked around more 

when their view of the driving scene was completely blocked by an opaque screen in the heavy 
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fog condition. By contrast, horizontal gaze dispersion was more concentrated when drivers 

performed a visual secondary task. However, once the manipulations ceased and an uncertainty 

alert captured drivers’ attention towards an impending incident, a similar gaze pattern was found 

for all drivers with no carry-over effects observed after screen manipulations. Results showed 

that drivers’ understanding of the automated system increased as time progressed, and that 

scenarios that encourage drivers to focus their gaze towards the road center are more likely to 

increase situational awareness during high levels of automation. 

Although the previous studies do not test driver monitoring systems’ potential to enhance 

situational awareness in real-time, they portray important measurements that may one day be 

implemented in more advanced camera-based driver monitoring systems.  Table 2 shows a 

comprehensive list of common video-based measures used to detect driver distraction and fatigue 

(Gonçalves and colleagues 2015). All of the measurements are based off head and eye detection 

and have been used in a variety of studies to understand the out-of-the-loop performance 

problem at varying levels of automated driving. For example, Boverie and Giralt (2008) created 

a driver vigilance monitoring system in level 1 AVs that captured the opening and closing of 

eyelids for fatigue detection. Their system detects features of the driver’s face and eyes such as 

eyebrows, eye corners, and nostrils. They created four categories of blink classification based on 

the duration of eyelid closing: Short, Long, Very Long and Sleepy blinks. In their experiment, 12 

drivers each drove about 360 km for a duration of about four hours. The degradation of the driver 

state all along the experiment was well detected by the system and verified by EEG and vehicle 

metrics.  
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Table 2. Adapted from Gonçalves and colleagues (2015). 

Distraction Type Distraction Metric Fatigue Type Fatigue Metric 

Visual Glance Pattern Eye Based Blink duration 

Mean Glance Duration Blink Frequency 

Eyes-Off-Road Duration  Microsleep rate 

Auditory Pupil Diameter Behavior 

Based 

Yawning  

Blink Frequency Nodding   

Mechanical Head direction Slouching  

Cognitive Pupil Diameter Eyebrow rising 

 

Assuming driver state monitoring can detect the state of the driver perfectly, how can we 

use that information to enhance driver situational awareness and what are the consequences of 

certain interventions?  For example, Ahlström and colleagues (2013) found that using the AttenD 

algorithm to issue warnings during manual driving decreased the visual time sharing between the 

driving task and a secondary task. The AttenD algorithm is a camera-based driver monitoring 

algorithm that attempts to classify drivers as out-of-the-loop in real-time if their visual attention 

is off the road. The system extracts facial features and determines areas of interest the driver may 

be focused on using gaze. Gaze is estimated as a vector perpendicular to the front of the face 

projecting outward. If the drivers gaze is directed away from the field relevant for driving, their 

visual attention is considered to be away from the road. AttenD identifies visual distraction in 

real time based on single long glances as well as repetitive glances (Kircher and Ahlström, 

2013). Glances can be described as gaze duration and gaze frequency on a particular area of 

interest. When the driver’s glances are directed away from the field relevant for driving for a 

certain period of time, such as 2 seconds, the algorithm may classify the driver as distracted 

(Kircher and Ahlstrom 2009). Algorithms such as AttenD may be used in level 3 AVs to 

reinforce monitoring behavior and enhance situational awareness. The results indicated that the 

total duration of potentially dangerous off-road glances was shortened by AttenD. The following 
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study looks to use similar head tracking and algorithms to understand how driving behavior in 

automated vehicles changes and how these changes in behavior can help enhance situational 

awareness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

35  

 

CHAPTER 3 – RESEARCH QUESTIONS AND HYPOTHESES 

A dense history of research shows that requiring humans to monitor automated tasks 

leads to vigilance decrement. When automated vehicles fail, the resulting consequences could be 

fatal. Sustained attention toward the driving task is needed in order to optimize situational 

awareness and transfer of control when automation fails. In order to automate driving tasks 

without reducing driver situational awareness, driver’s need to be kept on the loop through other 

driving related tasks that provide feedback. Giving drivers decision-making abilities may help 

reinforce behavior associated with higher situational awareness.  In this study, we use a camera-

based driver monitoring system to monitor the driver’s head behavior and provide feedback. The 

driver monitoring system requires drivers to make decisions about their own behavior. We 

believe that driver monitoring systems can help direct drivers’ gazes toward the road and their 

attention towards the field relevant for driving (FRD). The FRD is considered the road, objects, 

and events outside of the vehicle and within the driver’s field of vision. Moreover, these camera-

based driver monitoring systems can be used to enhance situational awareness as well as 

takeover performance in highly automated vehicles. This study looks to answer and confirm the 

three following questions and hypotheses: 

1. Can the DMS interface for the AM group be used to direct gaze back to the FRD and 

enhance situational awareness of drivers while drivers are on the loop and engaged in a 

secondary task?  

Hypothesis: The AM DMS interface can be used to increase SAGAT scores, the 

frequency of glances toward the FRD, the average duration of glances toward the FRD, 

and the total duration of time spent looking toward the FRD compared to the Baseline 

and SCT groups. 
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2. Can the AM and SCT DMS interfaces help drivers react sooner and with smaller lateral 

deviations after being prompted to takeover while engaged in a secondary task during 

level 3 automated driving? 

Hypothesis: Both AM and SCT groups’ DMS interfaces can be used to reduce hand to 

steering wheel and steering response times and maximum lateral deviations during level 3 

AV takeovers compared to the Baseline Group. Drivers in the SCT group will return their 

hands to the steering wheel and steer sooner with less braking and smaller maximum lane 

deviations than the other two groups.  

3. How do DMS interfaces affect driver complacency in the level 3 AV?  

Hypothesis: Drivers in the Baseline group and SCT group will report higher levels of 

overall comfort, comfort during AutoDrive, and comfort while their eyes are off the road. 

in the system compared to the AM group. Drivers in the SCT group will report higher 

levels of takeover comfort. There should be no significant difference between group 

comfort levels for transitioning from manual to AutoDrive. 

In order to test these hypotheses, we have conducted a level 3 AV study and have 

collected data using the NADS-1 high fidelity simulator, a camera-based driver monitoring 

system, as well as situational awareness data during freeze-probe events. The goal of the study 

was to understand if camera-based driver monitoring systems can be used to enhance driver 

situational awareness and takeover performance in level 3 automated vehicles and to discover 

other consequences of driver monitoring systems in level 3 automated vehicles as well as 

implications for future research and implementation. 
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CHAPTER 4 – MATERIALS AND METHODS 

This experiment was designed to understand how driver monitoring systems can be 

implemented to enhance situational awareness and takeover performance of distracted drivers in 

level 3 AVs. 

Participants 

Participants were recruited from the NADS IRB-approved registry and contacted by 

email or phone. They were provided a general overview of the study and screened to verify 

eligibility. The sample population consisted of 24 participants (12 male and 12 female) within 

the age range of 21-45 that had at least three years of driving experience and were in good 

general health. A between subject analysis was set up with three groups of eight subjects, and 

each subject was randomly placed in one group. The three groups include the Baseline (control) 

group, the State Contingent Takeover group, and the Attentional Maintenance group. There were 

4 males and 4 females in each group.  

Apparatus 

Driving simulators are necessary to test AV technologies unfit for implementation on 

roads and testing during real-world hazardous situations. Performance in simulators have been 

verified to reflect real-world driving performance in the past. A series of experiments at the Iowa 

Driving Simulator examined the differences between simulators compared to real-world driving 

and found that driver response times were statistically equivalent after perception of a threat 

(McGehee et al., 2000). Furthermore, strong positive correlations were found between simulators 

and real-world driving conditions for drivers transferring control to and from automation with no 
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significant differences with regard to workload, perceived usefulness and satisfaction (Eriksson 

et al., 2017).  

This study used the high-fidelity full-motion NADS-1 simulator at the National 

Advanced Driving Simulator at the University of Iowa as shown in Figure 4. The NADS-1 

simulator consists of a 24-foot-diameter dome, which encloses a full-size sedan. The 13 degree-

of- freedom motion system provides drivers accurate acceleration, braking, and steering cues as 

if they were actually driving. Motion is critical to testing countermeasure effectiveness because 

drivers rely on these physical cues to maintain vehicle position in the lane and to detect 

deviations or lane departures. The NADS-1 uses sixteen high definition (1920x1200) LED (light 

emitting diode) projectors to display seamless imagery on the interior walls of the dome with a 

360-degree horizontal 40-degree vertical field of view. The simulator cab is a 2014 Toyota 

Camry equipped with active feedback on steering, braking, and accelerating as well as a fully 

operational dashboard. Data are sampled at 240 Hz. Due to the importance of motion cueing 

while the vehicle is under automated control, this study will make use of the NADS-1 simulator 

with a passenger vehicle sedan equipped with automated driving functionality and a driver 

monitoring system. Additionally, wireless and cellular capabilities are available in the cab to 

allow the driver to engage with carry-in electronic devices. 



www.manaraa.com

39  

 

 

Scenario Development 

Using the Interactive Scenario Authoring Tool (ISAT) at University of Iowa’s National 

Advanced Driving Simulator, a simulation was designed that consisted of approximately 40 

miles of interstate driving as shown in Figure 5. The interstate consisted of two lanes running in 

each direction with varying traffic density ranging from three to six surrounding cars.  

The drive included four freeze probes and four takeover events. Two of the takeovers 

were due to construction and the other two were due to failure in automation (sudden dropout). 

Each type of takeover event happened once during low traffic demand (3-4 cars) and once during 

high traffic demand (5-6 cars) (see Table 3).  

Figure 4. Exterior and interior views of the NADS-1 simulator. 
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Table 3. Freeze probes and hazardous events. 

Event Event Name 

Event 1 Freeze 1 

Event 2 Dropout high demand 

Event 3 Freeze 2 

Event 4 Work zone high demand 

Event 5 Freeze 3 

Event 6 Work zone low demand 

Event 7 Dropout low demand 

Event 8 Freeze 4 

 

 

= freeze probe
= sudden dropout
= construction zone
= restart points

Figure 5. Bird's eye view of simulation track. 
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Procedure 

Participants were asked to avoid consuming alcohol or other drugs not prescribed by a 

physician within the 24 hours before the experiment. They were informed that they will be 

driving an automated vehicle and that they may engage in other activities while it is in operation. 

Upon arrival, the study was explained, and participants were asked to provide informed consent. 

This was followed by a general survey on trust of technology, a general demographics survey, 

and a presentation on the automated vehicle and general simulator procedures. Participants were 

then escorted to the simulator where they were provided a brief overview of the cab layout and 

were allowed to adjust their seat, steering wheel, and mirrors. Although participants were 

encouraged to engage in a secondary task, and other activities they felt safe engaging in while 

the vehicle was under automated control, they were reminded that they were responsible for the 

overall safety of the drive. Headphones or earbuds while driving were not allowed.  

The familiarization of the simulator took place at the beginning of the first drive and 

lasted approximately 10 minutes, during which drivers had a chance to accelerate, engage in 

automation, brake, and steer. During this period, they were also introduced to freeze probe events 

as well as attention and takeover alerts. AutoDrive was engaged by pressing a button on the 

steering wheel with their right thumb (see Figure 6). When automation was engaged, drivers 

were alerted by an auditory signal and a visual icon on the instrument panel behind the steering 

wheel. The level 3 automated system included longitudinal and lateral control with adaptive 

cruise control, lane keeping assistance, and automated lane changing. At the end of the practice 

drive, participants were also asked to complete a simulator sickness survey before beginning the 

main drive.  
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At the beginning of the main drive, participants were asked to drive to 65mph and to 

engage automation. Automated auditory messages reminding the driver to engage automation 

were also provided at the beginning of the driver and after takeover events. After completing the 

main drive, participants were escorted from the simulator to complete a post-drive survey that 

evaluated potential simulator symptoms, trust and acceptance in the automated vehicle, mental 

models, and realism of the main drive. 

Secondary Task 

Drivers of level 3 AVs tend to disengage from driving tasks to engage in non-driving 

related tasks. In order to examine the potential of driver monitoring systems to enhance 

situational awareness and takeover performance of a distracted driver in a level 3 AV, 

participants were asked to hold an iPad and engage in a trivia game subject of the participant’s 

choosing (see Figure 7). Studies have found that visual and motoric tasks are most demanding 

and lead to lower quality takeover performance (Gold et al., 2015). The trivia game was provided 

by TriviaPlaza.com. In order to have drivers naturally engage in the secondary task as they 

would in the real world, a system of monetary incentives was used to replicate the motivational 

tradeoffs of a distracted driver. Although all participants received additional compensation, 

Figure 6. AutoDrive button to engage automation followed by icon and audio. 
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participants were originally deceived into believing additional compensation would be received 

only if they answered 100 trivia questions correctly within the study drive. Participants were 

asked to engage in the secondary task as much as they felt comfortable while the car was in 

automation. 

 

 

Takeover Scenarios 

Participants experienced two dropout takeover events and two construction takeover 

events while engaged in the secondary task. The construction takeover events involved a work 

zone that blocked the lane the vehicle was in as shown in Figure 8. Drivers were issued a 

takeover request and were required to take back control from the vehicle in order to safely 

maneuver into the adjacent lane and avoid collision with the construction. The vehicle remained 

in automation until the driver engaged manually. Automation was disengaged anytime drivers 

intervened using the steering wheel, the breaks, or by pressing the automation button on the 

steering wheel. 

Driver engaged in a secondary task during level 3 automated driving.Figure 7. Driver engaged in secondary task during 

level 3 automated driving. 
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The dropout events involved gradual steering disturbances on a curved road that 

eventually led to a sudden and total failure in the automated system as shown in Figure 9. A 

takeover request was issued at the point of the complete automation failure. At this point, 

participants were required to takeover control of the vehicle manually to prevent the car from 

leaving the lane. All groups received a baseline takeover warning 6 seconds prior to collision 

with a construction zone and a takeover warning precisely at the time of complete automation 

failure during the dropout events. After each takeover event, an automated audio message 

reminded the driver to put the vehicle back into automation. Data collected from the takeover 

events include human input to the vehicle as well as the DMS. 

 

 

 

Figure 8. Maneuver required by driver to avoid construction zone. 

Figure 9. Maneuver required by driver to 

maintain control after automation dropout. 
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SAGAT 

Four freeze probes were implemented to measure situational awareness throughout the 

drive. These freeze probes consisted of a stretch of highway where the car remained in 

automation, but there was no visibility of the scenario as the screens turned completely white. 

The freeze probes were based on Endsley’s SAGAT method (Endsley, 1988a). During the freeze 

probes, a driver's situational awareness was measured through questions about the environment. 

During each freeze probe, participants were immediately handed a sheet by the researcher and 

asked to draw the traffic configuration before the driving scene continued. Participants were 

asked to write in the color of the car and the location of the vehicle in boxes which represent 

spatial proximity (see Figure 10). The freeze probes lasted approximately 30 seconds before the 

driving scene resumed in which the participant was then required to immediately hand back the 

sheet to the researcher. No other data was collected during the freeze probes. Traffic 

configurations did not change during or immediately after the end of the freeze probes. SAGAT 

was not found to affect performance and has been shown to be an objective measurement of 

situational awareness that can be used to compare human in the loop systems (Endsley, 1988a). 

The information from the freeze probes was used as ground truth to compare the overall 

situational awareness of each group and for comparison to DMS data. 
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DMS and Algorithms 

A driver monitoring system provided by Aisin was integrated into the NADS-1 cab and 

used to classify the state of the driver.  The driver monitoring system detected drivers’ eyelids 

and face orientation and determined the direction of their gaze throughout the drive except 

during freeze-probes. Calibration of the drivers’ faces and the center of their gaze took place 

while they were operating the vehicle manually before transferring control to the automated 

system. A simple yet effective algorithm was implemented that alerted drivers based on their 

group condition after a number of seconds of gaze fixation off the road. An algorithm similar to 

the AttenD algorithm was used by adjusting the field relevant for driving and the time buffer that 

decrements when the driver is looking away from the field relevant for driving (Kircher and 

Ahlström, 2013).  

If the participant’s gaze lied inside the FRD, defined as a circle with radius ten degrees 

from the center of calibration, the time buffer fell quickly to zero. When the participant’s gaze 

lied outside the FRD, or if the camera was not tracking the driver’s gaze, the time buffer 

Figure 10. Freeze 

Probe Test 
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incremented up to 60. An attention alert was given to the driver when the buffer exceeded 30, 

which indicated the driver’s gaze lied outside the FRD for at least 30 seconds. The signal could 

not repeat at a rate faster than once every 30 seconds. Equation 1 was used to determine when a 

signal would be given, where θ and ϕ are pitch and yaw of the driver’s face. When the 

participants gaze lies inside the FRD, the value of ρ is less than one and greater than one if their 

gaze lies outside the FRD. 

𝜌 =  √
(𝜃−𝜃0)2

100
+

(𝜙−𝜙0)2

100
                                                  Eq.1 

In addition to gaps in research studying driver monitoring systems in highly automated 

vehicles, there are currently no studies that establish situational awareness ground truth for 

comparison to these algorithms in the presence of a secondary task.  

 

Experimental Design 

The experiment comprised of three groups with 4 males and 4 females randomly selected 

for each DMS group. All drivers were warned with a standard warning system similar to that of 

current commercial warning systems. Previous studies have shown that drivers need about 5-8 

seconds to take back control from automation (Mok et al., 2015). In this study, a 6 second 

baseline takeover warning was used before each construction zone. Takeover warnings were 

issued through a red and black icon in the heads-up display behind the steering wheel as shown 

in Figure 11. The visual warning was also accompanied with an auditory warning.  

In addition to takeover warnings, the State Contingent Takeover and Attentional 

Maintenance groups were given attention alerts. The attention alert was also given visually in the 

heads-up display as shown in Figure 11 and was accompanied with an auditory warning different 

from that of the takeover request. The point at which the driver was warned depended on the 
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DMS algorithm. For the State Contingent Takeover group, the algorithm alerted the driver at 

most 4 seconds before the baseline 6 second warning. The driver could have been warned at any 

time within the extra 4 second interval as soon as the DMS detected their gaze was away from 

the field relevant for driving for more than 10 seconds. The Attentional Maintenance group was 

given an attention alert anytime the driver’s gaze was outside the field relevant for driving for 

more than 30 seconds and was not dependent on the timing of takeover events.   

All groups received a takeover warning at the time in which automation completely failed 

during dropout events as shown in Figure 12. Prior to complete failure, slight disturbances could 

be felt from the automated vehicle as soon as 10 seconds prior to dropout. The state contingent 

group received an attention alert at most 3 seconds before dropout using the same DMS 

algorithm as for the construction zone events. The control group received no attentional alerts 

from the DMS at any point in the drive. 

 

 

Figure 11. Takeover process for each DMS group before a construction zone. 



www.manaraa.com

49  

 

 

Data Analysis 

The purpose of this study was to determine the effects of the AM and SCT interfaces on 

drivers in a level 3 AV. The interface for the AM group was designed to use driver state 

feedback to keep drivers on the loop. The purpose of the AM group was to test how attention 

alerts based on gaze behavior affect situational awareness and takeover performance, as well as 

gaze behavior itself, compared to drivers in a level 3 automated vehicle who did not receive 

attention alerts. The SCT interface used driver state information to modify takeover requests 

when drivers were distracted. The SCT group was designed for two purposes. Its first purpose 

was to understand how an interface that alerted drivers before a TOR effected takeover 

performance. The second reason for the SCT group was for comparison to drivers in the AM 

group who were not given attention alerts based on takeover events but were alerted throughout 

the drive based on if their gaze was directed toward or away from the field relevant for driving 

(FRD). We were interested in how the AM group’s interface prepared drivers for takeovers 

compared to the SCT interface which alerted drivers before a takeover request.   

State-Contingent

Control

Attentional 
Maintenance

Lane Disturbance Dropout

3s

10s

Figure 12. Takeover process for each DMS group before automation dropout. 
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The independent variables used for analysis include the DMS interface between groups, 

the traffic configuration for the freeze-probes within groups, and the location and type of 

takeover event within groups. Analysis of dependent variables will be divided into four main 

data sets shown in Table 4. The first set will include results from the freeze-probe questionnaire 

derived from SAGAT.  The results of the questionnaire will be used to help establish situational 

awareness ground truth for comparison to the other data sets. The second set will include data 

from takeover events, which includes human input to the vehicle and DMS. The takeover events 

data set includes all data starting several seconds before the takeover request up to the first point 

in time in which the driver presses the AutoDrive button. From this data set, we will look to 

analyze response times and takeover quality. The third set includes DMS data from all other 

sections in which the vehicle is in automation, except during the freeze-probes. In these 

automated sections, data from the DMS will be used to analyze gaze behavior as the participant 

transitions back and forth between the monitoring task and the trivia task. The fourth data set 

includes subjective measurements of trust from post-drive surveys. RStudio version 1.0.143 was 

used for all data analysis. 

Table 4. Data sets used for analysis. 

Main Data Sets Purpose and Content 

1. Freeze Probe Questionnaires Establishes situational awareness ground 

truth. Based on fixed traffic configurations. 

2. Takeover Events For takeover performance evaluation. 

Includes DMS data and vehicle data 

3. Automated Driving Sections For analyzing gaze behavior data from the 

Driver Monitoring System 

4. Post-Drive Surveys For evaluation of trust based on subjective 

measurements  
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Question 1: Can the DMS interface for the AM group be used to direct gaze back to the 

FRD and enhance situational awareness while drivers are on the loop and engaged in a 

secondary task?  

 

In level 3 AVs, drivers are taken out of the control loop for long periods of time, which 

makes monitoring responsibilities increasingly important for tomorrow’s drivers. Because 

humans are historically bad at monitoring automation, AV interfaces that use DMSs aim to 

increase situational awareness by directing the driver’s attention back to tasks relevant to driving. 

Although the freeze probe questionnaires are the only objective measurement of situational 

awareness used in this study, driver head movement and gaze can be used to detect whether the 

driver is paying attention to task-relevant objects (Doshi and Trivedi, 2012). Dependent 

measurements are shown below in Table 5. 

 

Table 5. Dependent variables used to answer research question 1. 

Dependent Measures 1 Calculation Per Subject 

Situational awareness scores (%) Accuracy averaged for all four freeze probes  

Frequency of glances (glances/min) Total number of glances toward the FRD 

divided by the total time of the drive  

Duration of glances toward the FRD (s)  Geometric mean of all glance durations toward 

the FRD  

Percent of time drivers look toward the 

FRD (%) 

Total time DMS classified driver as looking 

toward the FRD divided by the total time  

 

It was predicted that drivers in the AM group would have higher accuracy on freeze-

probe tests, transition gaze between the driving task and the secondary task more frequently, 
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glance longer toward the FRD, and spend a greater percent of time looking toward the FRD. 

Freeze-probe questionnaires used to measure the driver’s situational awareness were scored 

using an answer key. The answer key was marked with the correct position of the surrounding 

cars relative to the driver for each freeze probe. After scoring the percent of surrounding vehicles 

drivers correctly marked on their freeze-probe sheets, the scores were then aggregated across the 

three DMS conditions and a one-way ANOVA was used to compare the accuracy between 

groups.  

In addition to objective measurements of situational awareness, data from the DMS was 

used to measure a variety of gaze metrics throughout the drive. Because the driver was either 

engaged in the secondary task or the monitoring task during automation, gaze was only analyzed 

on a binary scale in which gaze is directed toward driving related tasks if the drivers gaze is 

determined by the DMS to be inside the field relevant for driving, or on non-driving related tasks 

if the drivers gaze was determined to be outside the field relevant for driving. These 

measurements are based on similar measurements used by Ahlstrom and colleagues (2013) to 

study the AttenD algorithm. 

The frequency of glances toward the FRD measures how often drivers shift their attention 

between the secondary task and the driving task. This was calculated using the total of number of 

glances toward the FRD divided by the time of each half of the drive.  The average duration of 

glances toward the FRD was calculated for each driver. This measurement gives information on 

the length of time the driver stayed engaged in the driving task. Frequency of glances and 

duration of glances have both been used to determine driver distraction (Kircher and Ahlström, 

2009). We also looked at the total percent of time drivers look toward the FRD as an overall 
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measure of how much time was spent monitoring automation and driving related tasks. Gaze 

measurements were compared between groups using a one-way ANOVA and Tukey’s test. 

Question 2: Can the AM and SCT DMS interfaces help drivers react sooner and with 

smaller lateral deviations after being prompted to takeover while engaged in a secondary 

task during level 3 automated driving?  

 

In order to understand how DMS interfaces affect takeover performance, we used the 

takeover events data set to compare the DMS conditions using the dependent variables shown in 

Table 6. A previous study by Gold and colleagues (2013) showed that as the timing of takeover 

requests increase, steering maneuvers increase and hands on wheel response times decrease. 

Here we examined how different DMS conditions affect hands on wheel time and steering 

response time when takeover alert timing remains constant. Hands on wheel time was identified 

through video coding and measured as the first instance drivers placed their hands on the steering 

wheel. Steering response time was measured by the first instance of a steering wheel movement 

greater than three degrees in magnitude.  

 

Table 6. Dependent variables used to answer research question 2. 

Dependent Measures 1 Calculation Per Subject 

Hand to steering wheel response time (s) Arithmetic mean for each type of takeover  

Steering response time (s) Arithmetic mean for each type of takeover  

Maximum lane deviation (ft) Arithmetic mean for each type of takeover  

 

It was predicted that drivers of both AM and SCT groups would have their hands on the 

wheel and initiate steering sooner than in the Baseline group, but that the SCT group would have 
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the earliest response times. Hands on wheel time and steering response time will be averaged 

over each type of takeover event for each subject for comparison between groups using a one-

way Analysis of Variance (ANOVA). One-way ANOVA provides the best comparison of means 

between multiple groups as it controls for the overall rejection of the null hypothesis. In other 

words, ANOVA corrects for Type I error, which is the probability of finding an effect that is not 

there. ANOVAs have been used in a number of papers to analyze response times and lateral lane 

deviations during takeovers (Gold and colleagues, 2015; Louw and colleagues, 2015; Zeeb and 

colleagues, 2017; Mok and colleagues, 2015). Levene's test for homogeneity of variances is 

included in the output. If groups were statistically different according to the ANOVA, Tukey’s 

honestly significant difference was used to test significance between group means. Games 

Howell post hoc test replaced Tukey’s if the homogeneity of variances assumption failed.  

Measures of maximum lateral deviation were also recorded for each takeover event and 

used as indicators of control and stability. Maximum lateral deviation was measured as the 

maximum distance from the center of the lane during each takeover event. Greater maximum 

lateral deviation values represent less stable control (Louw and colleagues, 2015). We predicted 

that the Baseline group would deviate from the center of the lane during takeover events more 

than the AM and SCT groups and that the SCT group would have the smallest maximum lane 

deviation. 

Question 3: How do DMS interfaces affect driver complacency in the level 3 AV?  

 

Operators tend to over rely on poorly designed automation to carry out tasks, which can 

lead to automation complacency. When drivers are complacent they may use the AV in a way 

the designer did not intend for the system to work, especially during automation failures. 
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Automation can induce complacency as secondary tasks compete with the monitoring task for 

the driver’s attention (Parasuraman and Manzey, 2010). In order to avoid cases of misuse, AVs 

must be designed to avoid automation complacency. In addition, a system’s trustworthiness must 

be transparent to drivers to help properly calibrate their trust in the system. Although the word 

‘trust’ was not used in the post-drive survey, complacency and over-trust have been used 

interchangeably in the literature (Parasuraman and colleagues, 1993). Nevertheless, we will refer 

to the concepts of automation complacency and trust as different yet correlated constructs in 

which initially high trust toward automation can lead to automation complacency (Parasuraman 

and Manzey, 2010).  

In addition, Hergeth and colleagues (2016) found a consistent relationship between gaze 

behavior and trust in automated vehicles after automation failures. They found that participants 

who reported higher trust in automated vehicles monitored the FRD less frequently. In 

combination with previous gaze measures, we used subjective measurements of comfort to infer 

how DMS interfaces affect the driver’s trust and complacency levels in the AV. Based on our 

earlier predictions of gaze behavior, we predicted that drivers in the Baseline and SCT group 

would report higher levels of overall comfort, comfort during AutoDrive, and comfort while eyes 

were off the road than the AM group. Because drivers in the SCT group will have a state-

contingent attention alert before the takeover request, we predicted that they would be more 

comfortable taking back control during takeover events than the Baseline and AM groups. 

Because the HMI was the same for all groups while transitioning from manual to AutoDrive, 

there should have been no significant differences. Dependent measurements of comfort are 

shown in Table 7. Comfort was measured subjectively on a scale from 1-7 using a post-drive 

questionnaire, found in Appendix A. Comfort scores were analyzed using a one-way ANOVA. 
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Shapiro-Wilk’s method was used to test for normality. If the assumption of normality failed, we 

used a two-sampled Wilcoxon rank sum test with Bonferroni correction, which is a non-

parametric t-test.  

 

Table 7. Dependent variables used to answer research question 3. 

Dependent Measurements 3 Questions (1=low and 7=high comfort)  

Overall Comfort In general, how comfortable did you feel during the drive? 

Transferring Control to 

Automation 

How comfortable did you feel transferring the vehicle into 

AutoDrive?  

Taking Control from 

Automation 

How comfortable did you feel resuming manual control 

from AutoDrive during the drive? 

Comfort during Automation Compared to driving manually, how comfortable did you 

feel driving in AutoDrive? 

Comfort taking eyes off the road Compared to commuting in your regular vehicle, how 

likely is it that you would take your eyes off the road for 

several seconds while driving with AutoDrive engaged? 
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CHAPTER 5 – RESULTS 

Situational Awareness and Gaze Measurements 

Situational Awareness Accuracy  

Freeze-probe accuracy was averaged over all four freeze-probe events for each 

participant. Freeze-probe accuracy reflects level 1 situational awareness. Figure 13 shows freeze-

probe accuracy for each group. An ANOVA comparing the freeze-probe averages showed there 

was a significant difference between groups (F(2,20)= 4.671, p = 0.0217). Normality and 

homogeneity of variance assumptions were met using Levene’s and Shapiro-Wilk’s tests at a 95 

percent confidence interval. Post-hoc analysis using Tukey’s method showed a significant 

difference (p=0.0208668) between the AM group (M=80.52754, SD=8.404729) and the SCT 

group (M=69.35757, SD= 8.600540). Although the difference between the AM and Baseline 

groups was not significant (p=0.1078324), possibly due to weak statistical power from low 

number of subjects, the mean freeze-probe accuracy for the AM group was also much higher 

than the Baseline group’s (M= 72.14524, SD = 4.793792). The difference between freeze-probe 

accuracy of the SCT and Baseline groups was also not significant (p=0.7603024). 
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Figure 13. Boxplot showing median and 25-75 percent quantiles for freeze-probe accuracy with 

each point representing subject accuracy. 

 

Gaze Measurements 

Binary gaze behavior (toward or away from the FRD) was visualized for each subject. 

Before analyzing gaze measurements, subject 4 in the Baseline group was removed because the 

DMS was not able to capture head behavior during the second half of the drive based on visuals 

of the binary gaze data.  
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Figure 14 shows the percent of time drivers were looking toward the FRD. An analysis of 

variance showed a significant difference between group means (F(2,19) = 3.115, p=0.0676). 

Normality and homogeneity assumptions were met at a 95 percent confidence interval using 

Levene’s and Shapiro-Wilk’s tests. Post-hoc results using Tukey’s methods showed drivers in 

the AM group (M=0.3464620, SD=0.21069765) looked toward the FRD more than the Baseline 

group (M=0.1384349, SD=0.05247121; p=0.0586145). There were no significant differences 

between the AM and SCT (M=0.2283317, SD=0.14194410) groups (p=0.3089627) or the SCT 

and Baseline groups (p=0.5474926).  

 

There was no significant difference between groups for the frequency of glances up 

toward the FRD (F(2,19)=2.181, p=0.14). There was also no significant difference in glance 

duration toward the FRD between groups  (F(2,18)=.734, p=.493; F(2,19)=0.252 , p=0.78). 

Boxplots for frequency of glances (Figure A1) and glance duration (Figure A2) are shown in 

Appendix A. All non-significant visualization of measures are shown in Appendix A. 

Figure 14. Boxplot showing median and 25-75 percent quantiles for the amount of time 

subjects spent looking toward the FRD with each point representing subject percentage. 
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Takeover Response time and Quality 

All takeover time and quality measures were analyzed using the arithmetic mean for each 

type of takeover. Before analyzing the response times and lane deviations for the dropout events, 

subject 8 was removed. The reasoning was that the hand response time was more than 10 

seconds before the dropout takeover request, which is more than two standard deviations away 

from the group mean (M=-0.6577, SD=4.514). Moreover, because there was no visual indication 

that a dropout was approaching, the dropout could not have been predicted in advance.  

Figure 15 shows hand response times for each group during the dropout events. Larger 

values represent slower hand to steering wheel response times and smaller values represent faster 

response times after a takeover request. An analysis of variance showed there were significant 

differences between group means (F(2,18) = 5.021, p=0.0185). Homogeneity of variance and 

normality assumptions were verified for all ANOVAs using Levene’s and Shapiro-Wilk’s tests 

and were met using a 95 percent confidence interval. 

A post-hoc Tukey test showed that drivers in the AM group (M=1.164323, SD = 

0.2313972) had significantly faster hand response times (p=0.0570690) than the Baseline Group 

(M=1.591369, SD=0.5064851). The SCT group (M=1.048264, SD=0.1186762) also had 

significantly faster hand response times (p=0.0226716) than the Baseline Group. Hand response 

time was not significantly different between the AM and SCT groups (p=0.7962625).  
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Figure 16 shows steering response time during the dropout events. Larger values 

represent slower steering response times and smaller values represent faster steering response 

times after a takeover request. ANOVA results showed a significant difference between groups 

(F(2,18)= 4.078 , p=0.0346). Tukey post-hoc results showed drivers in the AM group 

(M=1.377083, SD=0.2366996) had significantly faster response times (p=0.0680899) than the 

Baseline group (M=1.716369, SD= 0.3734020). Steering response time was also significantly 

faster (p=0.0512596) in the SCT group (M=1.329514, SD=0.1553358) than the Baseline group. 

No significant difference in steering response time was found between the AM and SCT groups 

(p=0.9447233).  

Figure 15. Boxplot showing median and 25-75 percent quantiles for hand 

response time during dropout events with each point representing subject mean. 
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Figure 16. Boxplot showing median and 25-75 percent quantiles for steering response time 

during dropout events with each point representing subject mean. 

 

Maximum lane deviation for dropout events (Figure A4 in Appendix A) was not 

significantly different between groups (F(2,18)= 1.526, p=0.244). The main effects between 

groups for hand response time during work zone events (Figure A3 in Appendix A) were not 

significant (F(2,19)= 1.548, p=0.238). The main effects between groups for steering response 

time during work zone events (Figure A5 in Appendix A) were not significant; F(2,18)= 1.554, 

p=0.239). Maximum lane deviation for work zone events (Figure A6 in Appendix A) was not 

significantly different between groups (F(2,19)= 0.549, p=0.586).  

Subjective Measurements of Complacency 

As shown in Figures 17-19, drivers in the Baseline group were generally more 

comfortable than drivers in the AM and SCT groups. Comfort was scored on a scale from 1-7, 

seven being the most comfortable and one being the least comfortable. Violin plots were used to 

visualize the distribution of comfort scores and their probability density. The red dot in the 
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middle of the violin plot for each group represents the group mean. Levene’s and Shapiro-Wilk’s 

tests showed that assumptions of analysis were not violated for any ANOVAs on comfort. 

ANOVA results show there was a significant difference in overall comfort level between 

groups (F(2,18)=3.703, p=0.045). Drivers in the Baseline group (M= 3.571429, SD =0.9759001) 

were significantly more comfortable with the overall drive (see Figure 17) than drivers in the 

AM group (M=2.142857, SD =0.6900656; p=0.0409828). No significant differences were found 

between the SCT (M=2.571429, SD=1.2724180) and AM groups (p=0.7104766) or the SCT and 

Baseline groups (p=0.1802529). 

 

 

ANOVA results also showed a significant difference (F(2,18)= 7.304, p=0.00444) 

in takeover comfort levels between groups. Drivers in the Baseline group (M=5.714286, SD 

=0.7559289) were more comfortable taking over control from automation (see Figure 18) than 

drivers in the SCT (M=2.714286 SD =1.6035675; p=0.0034042) and AM groups (M=3.875000, 

Figure 17. In general, how comfortable did you feel during the drive? 
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SD =1.8077215; p=0.0663241). No significant difference was found between takeover comfort 

levels in the AM and SCT groups (p=0.3071887).  

 

 

ANOVA results also showed a significant difference (F(2,18)= 3.118, p=0.0702) in 

AutoDrive comfort levels between groups. Drivers in the Baseline group (M=4.333333, SD 

=1.5055453) felt more comfortable with AutoDrive (see Figure 19) than drivers in the SCT 

group (M=2.714286, SD =0.9511897; p=0.0856860). No significant differences were found 

between the AM group (M= 2.857143, SD = 1.3451854) and SCT group (p= 0.9760881) nor the 

between AM and Baseline groups (p=0.1235269).  

Figure 18. How comfortable did you feel when AutoDrive failed and you had to retake control? 
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Comfort with transferring control from manual to automation (Figure A7 in Appendix A) 

and comfort with taking eyes off the road (Figure A8 in Appendix A) were not found to be 

significantly different between groups (F(2,17)= 1.255, p=0.31; F(2,15)=0.19, p=0.829). 

 

 

 

 

 

 

 

 

 

 

Figure 19. Compared to driving manually, how comfortable did you feel driving in AutoDrive? 
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CHAPTER 6 – DISCUSSION 

Situational Awareness and Gaze 

We were correct in predicting that drivers in the AM group would have higher situational 

awareness than the SCT group. Results of the freeze-probe tests showed a significant difference 

in the percent of correctly identified vehicles between the AM and SCT groups, but not between 

the AM and Baseline groups. The freeze-probe test was designed to test Level 1 situational 

awareness, which is the foundation for overall situational awareness. The difference between the 

AM and SCT group’s freeze-probe accuracies suggests that a DMS interface that uses attentional 

maintenance alerts can increase situational awareness.  

We predicted that the AM group would look toward the FRD a higher percent of the time 

than the SCT and Baseline groups. Results showed that drivers in the AM group looked toward 

the FRD significantly more than the Baseline group, but not more than the SCT group, which is 

inconsistent with our results on situational awareness between groups. However, standard 

deviations were much larger between the AM and Baseline groups for the percent of time drivers 

directed their gaze toward the FRD than freeze-probe accuracies. For freeze-probe measures, the 

standard deviation of the AM group was almost twice as large, yet the standard deviation for the 

percent of time drivers looked toward the FRD was more than three times as large in the AM 

than the Baseline group. This suggests that although there is a large variance from attentional 

maintenance alerts to help direct a driver’s visual attention toward the FRD, attentional 

maintenance alerts are less of a factor for the variance of cognitive resources toward the FRD. 

Studies on mind wandering show cognitive attention does not always correlate with visual 

attention. When visual resources are directed toward driving related tasks, cognitive resources 

are not necessarily directed toward the driving task (Geden and colleagues, 2017; Kaber and 
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colleagues, 2012; Liang and Lee, 2010). Furthermore, Yang and colleagues (2018) found that the 

percent of time driver’s direct their gaze toward the FRD can significantly increase with 

cognitive distraction. Results show that the AM group had higher situational awareness than the 

SCT group even though there was no difference between the percent of time drivers spent 

looking toward the FRD. In other words, when drivers directed their visual attention towards the 

FRD, the AM group may have been more likely to direct their cognitive attention towards the 

FRD than the SCT group. Because there is no statistical significance between the two groups in 

the percent of time drivers spent looking toward the FRD, the difference in freeze-probe scores 

suggests that the SCT group may have kept their cognitive attention on the trivia task when 

looking up toward the FRD. Therefore, larger variations in gaze measures compared to freeze-

probe measures suggest that attentional maintenance alerts may not only cue drivers to look up 

but may help allocate cognitive resources toward the FRD. The results in terms of Merat and 

colleagues (2018) monitoring model suggest that attentional maintenance alerts helped drivers 

make decisions about the appropriateness of their monitoring behavior and adapt their interaction 

with the secondary task to direct cognitive resources toward the FRD (Schömig and Metz, 2018). 

It is important to note that, as predicted, there were no differences between the Baseline and SCT 

groups for either gaze percentage toward the FRD or freeze-probe accuracy.  

Had a larger number of participants been used, the difference between the AM and 

Baseline freeze-probe scores may also have been significant as the p value was on the boarder of 

being significant. On the other hand, had we described significance using only a 95 percent 

confidence interval, there would be no significant differences in gaze behavior between groups 

using Tukey’s post-hoc analysis. Nevertheless, using a more liberal criterion we see that 

attentional maintenance alerts help increase situational awareness and eyes on road time, which 
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is consistent with our predictions. However, it is important to note that the difference between 

the AM and SCT group for measures of total eyes on road time was nowhere near significant, 

which is inconsistent with our predictions. A lack of a difference between the AM and the SCT 

group for measures of gaze will be explained further in terms of comfort.  

Because monitoring an AV is considered an underload task, the attentional maintenance 

alerts may have increased performance by increasing arousal (Yerkes and Dodson, 1908). 

Moreover, Mackworth (1948) suggested that vigilance decrement can be mitigated using 

feedback performance to reinforce monitoring. The AM interface warned drivers based on their 

own monitoring performance, which may have increased arousal. In addition, the attentional 

maintenance warnings may have updated the driver’s memory (Parasuraman and colleagues, 

1996). Because drivers were encouraged to engage in the trivia task while the vehicle was in 

AutoDrive, they may have forgotten to monitor the environment and road or were reminded to 

shift their attention back toward the FRD using gaze performance feedback. When drivers hear 

the attentional maintenance alert, not only do they return their gaze back to the road, they are 

reminded their attention is not directed toward the FRD and to allocate cognitive resources 

toward the road. Attentional maintenance alerts remind drivers of the monitoring task which may 

help engage higher-level cognitive processes that transition visual and cognitive attention from 

the trivia task back toward the monitoring task and reinforce attention toward the FRD 

(Broadbent, 1977). Further analysis, discussed in sections related to comfort and trust, is needed 

to understand whether the stimuli changed behavior as a result of punishment, motivation, 

arousal, or stress. Nonetheless, the transition in visual and cognitive resources back to the 

monitoring task helped drivers in the AM group maintain situational awareness and react faster 

than the Baseline group during takeover events. 
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Takeovers 

We predicted that the SCT group would have the fastest response times and smallest 

deviations from the center of the lane and that the Baseline group would have the slowest 

response times and largest deviations from the center of the lane during takeover events. 

However, there was no significant difference between the AM and SCT groups during the 

dropout events. In addition, response times for both the AM group and the SCT group were 

significantly faster than the Baseline group. These results suggest that attentional maintenance 

alerts helped prepare drivers to react just as quickly to takeover events as state-contingent alerts. 

Because drivers in the AM group had more alerts to respond to, they may have been better able 

to transition their visual and cognitive attention back toward the FRD to regain situational 

awareness during takeovers. 

The takeover quality during dropout events between groups was not significant. 

Nevertheless, results suggest that attentional maintenance alerts can help increase situational 

awareness and help drivers return to the control loop more quickly during automation failure. 

Although situational awareness was not measured during takeover events, drivers in the SCT 

group who were out of the loop were given more time to react to takeover requests from state-

contingent alerts, which suggests that the takeover response time variance in the SCT group may 

be due to a lack of situational awareness and individual differences in the allocation of cognitive 

resources directed toward the FRD (Vlakveld and colleagues, 2018).  

Comfort and Trust 

We predicted that drivers in the Baseline and SCT groups would report higher levels of 

overall comfort than the AM group. Overall comfort scores between the AM and Baseline group 

were correctly predicted. These results also align with results from the percent of time drivers 
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looked toward the FRD (Körber and colleagues, 2018). A variety of concepts such as workload, 

arousal, and stress can be associated with an increase in performance and discomfort (Teigen, 

1994; Yerkes and Dodson, 1908). An increase in workload provides one explanation for the 

lower levels of overall and takeover comfort compared to the Baseline group. Adaptive 

automation that briefly allocates tasks to the operator has been shown to increase workload along 

with monitoring behavior (Parasuraman, 1996). Attentional maintenance alerts significantly 

increased the percent of time drivers monitored the FRD, which may have increased workload 

and reduced comfort.  

The percent of time drivers looked toward the FRD suggests an increase in monitoring 

workload from attentional maintenance alerts because the AM group spent more time monitoring 

the FRD. However, because the AutoDrive comfort scores were not significantly different 

between the AM and Baseline group, the difference in overall comfort scores may not reflect 

lower comfort from the physical sound but from expectations and interpretations of the 

attentional maintenance alerts. When participants were asked to describe additional factors that 

made them uncomfortable, not a single person mentioned discomfort from attention alerts. One 

person in the AM group mentioned they would have preferred an attention alert before a 

takeover event. Other comments were related to automation failure, takeovers, and a lack of 

control. Therefore, the difference in overall comfort may reflect a difference in the way the AM 

interface affected takeover expectations. Furthermore, a lack of significant differences between 

groups for eyes off road comfort also suggests the AM interface did not affect comfort while 

subjects were engaged in the secondary task during AutoDrive. Although the workload for AM 

drivers may have been higher, comfort scores suggests drivers may have been accepting toward 

attentional maintenance alerts to help increase their situational awareness and feel in control.   
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State-contingent warnings theoretically give a time advantage to regain situational 

awareness before a takeover request (TOR). Therefore, we predicted the SCT group would report 

higher levels of takeover comfort because they would have higher situational awareness during 

takeovers (Petersen and colleagues, 2019).  However, the Baseline group was significantly more 

comfortable taking over control from automation compared to both the SCT and AM groups.  

Because drivers could have experienced takeover events with or without a state-contingent 

attention alert before a takeover request, drivers may not have known what to expect. If the 

driver’s gaze was toward the FRD within 10 seconds before a takeover request, no state-

contingent attention alert would have been given. During these 10 seconds, drivers could have 

directed their attention back to the secondary task. Even if a SCT driver’s gaze was directed 

toward the FRD, their cognitive resources may have been occupied by the trivia task. A TOR 

without an attention alert could have come as a surprise. Drivers may have expected an attention 

alert prior to all takeover alerts. Failure of these expectations may have led to low comfort levels 

in the SCT group compared to the Baseline. It is also important to note that drivers in the SCT 

group could only interact with the DMS interface a maximum of four times, once for each 

takeover event.  

A transparent warning system is one in which drivers understand how, when, and why 

warnings are administered. Transparent warning systems are more trustworthy (Lee and See, 

2004). Therefore, a lack of transparency of the SCT interface to warn drivers of takeover events 

could have caused low levels of AutoDrive comfort as well as the large variation in overall 

comfort. Because the Baseline group did not receive attention alerts, the overall system may have 

been more transparent and comfortable during takeover events. Similarly, low transparency of 

the AM interface could have contributed to the lower takeover comfort experienced by the AM 
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group. Driver’s may have expected alerts to help with takeovers. If expectations failed, 

attentional maintenance alerts may have decreased comfort compared to the Baseline group.  

Complete transparency of automation does not always promote proper calibration of trust 

(Reinmueller and colleagues, 2018). Over time, if drivers begin to understand the DMS, they 

may over rely on warnings to remind them to look up toward the FRD. According to Hergeth 

(2016), this type of monitoring behavior demonstrates higher trust in the AM interface. A study 

by Reinmueller and colleagues (2018) showed that drivers may over rely on adaptive warning 

systems when they are aware of the occurrence, functionality and reliability of the strategy in 

order to optimize resources for engagement in a secondary task. If the AM interface was fully 

transparent and comfortable enough to maintain situational awareness, drivers may have reduced 

their monitoring workload in order to allocate resources toward the secondary task.  This may 

help explain the variance in the time AM drivers spent looking toward the FRD.  A lack of 

comfort in the interface warning system may also explain the lack of significance in gaze 

measures between the AM and SCT groups. Lower comfort in the SCT group may have directed 

visual attention toward the road. However, cognitive attention may have remained on the 

secondary task as demonstrated by measures of situational awareness. Nevertheless, limitations 

in the sample size suggest further analysis is required to understand how drivers distribute 

cognitive attention as there were no significant differences between the SCT and Baseline group 

for either situational awareness or gaze measurements. 

Limitations 

There were several limitations of the experiment that should be considered for future 

studies. Although ANOVA corrects against false significance, the only way to avoid non-

significant results that may be significant is to increase the power of the test with more subjects. 
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More participants would also help keep the variance between groups more consistent, which 

would help account for individual differences.  

Due to time constraints, cross balancing was not an option. Future studies will also need 

to cross balance events to minimize the effect of the order of events. Non-significant work zone 

events may be due to the fact that the work zones could be seen before takeover requests were 

issued. Individual differences in gaze behavior right before the work zone events may have 

contributed to the lack of significant differences between groups.  

It is important to note that although there was no significant difference between the AM 

and Baseline groups’ freeze-probe accuracies, the mean accuracy in the Baseline group was only 

slightly larger than the mean accuracy for the SCT group. Large variations of situational 

awareness in the AM and SCT groups may have skewed results. There were also large variations 

in the AM and SCT groups for the percent of time drivers directed their gaze toward the FRD. 

Standard deviations of percent of time drivers looked toward the FRD for the SCT group were 

more than twice as large as the Baseline group. Measures of situational awareness may have 

been limited by the subjects’ working memory. Similarly, measures of trust may be limited by 

the subjects’ long-term memory since they were conducted after the study drive. In addition, 

participants were not required to answer every question, which may have reduced statistical 

power. Moreover, large variations suggest that designers need to consider how individual 

differences affect situational awareness, trust, and interaction with the DMS interface.  

A larger study with more participants may find that AM drivers have higher situational 

awareness and look toward the FRD a higher percent of the time compared to both the SCT an 

Baseline groups. However, a longer study may also show behavioral adaptations to the attention 

alerts that decrease gaze percentage and situational awareness over time while an increase in the 
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number of takeover events may increase gaze percentage and situational awareness in the SCT 

and Baseline groups. Over time, these percentages may converge toward a common number 

between all groups. Because automation failure is a lot less frequent in the real world, attentional 

maintenance alerts may still help drivers look toward the FRD more than the Baseline group. 

Nevertheless, AM drivers may over rely on the DMS warnings to look up toward the FRD. 

Therefore, although attentional maintenance alerts help engage drivers in their monitoring task, 

improvements in the level of engagement are warranted to avoid drivers over relying on the 

DMS warning system.  
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CHAPTER 7 – CONCLUSIONS 

General Conclusion 

No other studies to date have used driver monitoring systems to measure gaze behavior 

and adapt the interface in a level 3 AV to increase situational awareness. This study used 

Endsley’s methods to objectively measure situational awareness and understand the effect of 

adaptive, camera-based driver monitoring interfaces on drivers in level 3 AVs. The goal was to 

increase driver situational awareness while drivers were out of the loop and increase takeover 

response time as well as takeover quality during transfer of control from the AV to the driver.  

Future Research 

More sophisticated analyses of gaze can help measure situational awareness before 

takeovers. Louw and Merat (2017) have previously shown that both vertical and horizontal gaze 

dispersion increase while gaining situational awareness. Gaze has also been shown to highly 

correlate with measures of trust (Hergeth and colleagues, 2016). Gaze dispersion can also be 

used as a sensitive measure for cognitive workload (Gold and colleagues, 2016). Future studies 

may also want to consider using time series analysis to measure gaze and test the effect of DMS 

interfaces over a longer period of time. A longer study could test how drivers adapt and rely on 

the interface and could include more takeovers, which would increase statistical power. 

Comparing gaze behavior and situational awareness over a longer period of time may also 

provide insight into whether attentional maintenance alerts help drivers direct both cognitive and 

visual attention toward the FRD or just visual attention. Similar adjustments could be made to 

test the effects of camera-based driver monitoring warning systems on fatigued drivers.  

Measures of situational awareness may be limited by the subjects’ working memory. 

Although there are no better ways to objectively measure situational awareness, subjective 
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measures of situational awareness, such as the Situational Awareness Rating Technique should 

also be used in combination with SAGAT. Subjective measures of situational awareness provide 

information on the confidence of one’s own situational awareness and have been found to 

correlate with measures of objective situational awareness and trust (Rousseau and colleagues, 

2010; Petersen and colleagues, 2019). Just as studies on trust have shown that proper calibration 

of trust with trustworthiness can enhance performance (Helldin and colleagues, 2013), proper 

calibration of actual situational awareness (objective) with perceived situational awareness 

(subjective) can help enhance performance (Lee, 1999; Rousseau and colleagues, 2010). As 

Endsley suggests, although subjective situational awareness may be completely independent of 

objective situational awareness, assessments of subjective situational awareness may provide a 

critical link between situational awareness and performance (Endsley and colleagues, 1998). 

Future studies involving feedback from DMSs should consider calibrating subjective situational 

awareness with objective situational awareness using methods derived from the Qualitative 

Analysis of Situational Awareness technique as ground truth (Edgar and colleagues, 2018). 

Driver monitoring interface systems that do not account for individual differences through 

measures of subjective situational awareness may not be able to properly calibrate situational 

awareness.  

Another limitation of this study lies in measurements of trust, which may be limited by 

the subjects’ long-term memory since they were conducted after the study drive. Just as camera-

based driver monitoring systems that measure gaze behavior can be used to calibrate confidence 

in situational awareness with objective situational awareness, they may also be used to calibrate 

trust with trustworthiness. Future studies of driver monitoring warning systems may be able to 

indirectly measure trust by adapting and analyzing a change in the time decrement used to issue 
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attentional alerts. In this study, the time decrement remained constant, but advances in adaptable 

warning algorithms may enhance measurements of trust and benefit drivers who adversely adapt 

to constant attention alerts. In other words, future DMSs not only need to help adapt driver trust 

to the system’s trustworthiness, but also adapt the system’s transparency, or trustworthiness, to 

avoid overreliance. However, constant attention alerts from the AM interface could still lead to 

disuse of the DMS, especially under highly reliable AV capabilities. Parasuraman and Riley 

(1997) define disuse of automation as the neglect or underutilization of automation, caused by 

alarms that activate falsely. Overtime, drivers may view DMS alerts as false alarms and find 

ways to turn them off or ignore the alerts.   

In order to avoid disuse and poor calibration of trust and perceived situational awareness, 

designers must properly develop cooperation between the AV and the driver. Communication 

and shared control promote cooperation (Flemisch and colleagues, 2016). In this study, 

communication was limited to binary gaze behavior and attention alerts. Nevertheless, 

advancements in communication may give drivers a sense of shared control. Because drivers 

may over rely on a transparent system, communication with the AV may help maintain 

engagement in the monitoring task. Furthermore, Parasuraman and colleagues (2000) identified 

four functions automation can control that may or may not be shared with the driver. These are 

information acquisition, information analysis, action selection, and action implementation. A 

number of prominent authors have recommended higher levels of automation for information 

acquisition and analysis, and lower levels of automation for action selection and implementation 

(Parasuraman and colleagues, 2000). Although AVs disengage drivers from physical control, and 

therefore, disengage drivers from action implementation, cognitive control (action selection) in 

the form of decision making can still be shared. Indeed, several authors have shown that decision 
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making is essential in maintaining optimal performance (Endsley and Kiris, 2004; Adams, 1961; 

Onnasch and colleagues, 2014).  In terms of Merat and colleagues (2018) findings, drivers may 

have difficulty remaining on the loop when action selection and decision making are completely 

left to the AV. Adaptive automation can be considered a form of nonverbal communication or 

shared control that helps facilitate decision making and cooperation. However, studies have 

shown that situational awareness decreases during times when automation is in control (Chen 

and colleagues, 2017). Therefore, future interface systems that use camera-based driver 

monitoring systems should help facilitate cooperation through decision making even while the 

vehicle is in automation in order to enhance situational awareness in level 3 AVs. Future driver 

monitoring systems may be able to use emotional cues to facilitate communication as well 

(Izquierdo-Reyes and colleagues, 2018).  

Final Conclusion 

 Humans have historically performed poorly on monitoring tasks, and the problem persists 

as demonstrated by the Tesla crashes in Willison, Florida and Mountain View, California.  

Because of the complexity of level 3 AVs, drivers may over rely on the system, which leads to 

drivers looking away from the FRD. A literature review on vigilance decrement and human 

monitoring limits looked to apply old and new human factors engineering principles to enhance 

driver monitoring performance in a level 3 AV. The literature review highlights the importance 

of feedback based on performance, adaptable automation, decision making, and calibration of 

trust to avoid vigilance decrement and out of the loop syndrome. However, drivers may also 

begin to over rely on driver monitoring systems. This creates a cyclical dilemma in which new 

technology is introduced in order to avoid the problems of old technology, yet the new 
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technology requires additional technology for the same reasons. Findings warrant further 

research into how to break this cycle of introducing new technology to fix the old.  

Nevertheless, camera-based driver monitoring systems have potential to break this trend. 

Till now, communication between a level 3 AV and driver was unilateral or involved very low 

levels of bilateral communication. Advancements in decision-based interface design and 

artificial intelligence may help make the monitoring task more satisfying and engaging. The idea 

is that when physical tasks are taken away, a mode of feedback is not the only aspect of the 

driving tasks that is taken away. When physical control is taken away, so is cognitive control. 

The monitoring task is a low cognitive workload task because there is no opportunity for 

cognitive control. Therefore, the cognitive task of monitoring associated with physical tasks of 

driving loses meaning. In other words, because reinforcement requires decision making and a 

lack of reinforcement leads to vigilance decrement, when there is no opportunity for decision 

making (cognitive control), motivation for situational awareness may decrease. Drivers then turn 

toward other tasks in which they do have cognitive control over. However, these tasks may be 

non-driving related and hazardous during takeovers. Therefore, driving task decisions are 

necessary to avoid vigilance decrement and maintain situational awareness because they provide 

cognitive control. Cognitive tasks that require decision making directed toward the overall 

driving task as a form of cognitive control may enhance awareness of the driving situation. 

Future research should look to understand how an increase in cognitive control can be designed 

using driver monitoring systems in order to comfortably reengage drivers in their monitoring 

responsibilities.  

Equally important is the automated vehicle community’s vision for designing safe and 

satisfying AVs. It appears that before moving in any direction, the automated vehicle community 
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needs to decide whether AVs should support safety through satisfying engagement in the driving 

task or satisfying and safe multi-tasking behavior. These are two views that may contradict each 

other. Louw and colleagues (2015) suggest that until there is an effective strategy to help drivers 

regain situational awareness during transitions of control from automation, drivers should be 

motivated to monitor the driving situation at all times. Moreover, as research has shown, drivers 

tend to engage in non-driving related tasks in highly automated vehicles (Banks and colleagues, 

2018; Buckley and colleagues 2018). Therefore, it appears that for level 3 AVs, multitasking 

behavior should be discouraged through design of a more satisfying monitoring experience.    

The research goal was to establish situational awareness ground truth for the application 

of adaptable level 3 AV interfaces using camera-based driver monitoring systems. An increase in 

situational awareness, the percent of time drivers spent looking toward the FRD, and takeover 

response times in the AM group validified these objectives. Moreover, this research shows the 

potential of camera-based driver monitoring systems to disengage drivers from secondary tasks 

and transition attention towards monitoring the FRD in level 3 and higher AVs. Driver 

monitoring systems can help facilitate bilateral communication between the driver and the AV 

system. However, comfort scores suggest further research needs to consider how to increase 

situational awareness without sacrificing user satisfaction. Future research on the frequency of 

driving related decisions, shared control, and bidirectional communication may direct the design 

of AVs toward a more situationally aware and satisfying monitoring experience. These 

preliminary results provide a foundation for the advancement of interface design methodologies 

necessary to increase situational awareness and takeover performance in level 3 AV.  
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APPENDIX A: NON-SIGNIFICANT MEASURES AND RESULTS 

 

 

Figure A 1. Boxplot showing median and 25-75 percent quantiles for frequency of 

glances toward the FRD per minute. 

 

Figure A 2. Boxplot showing median and 25-75 percent quantiles for the duration 

of glances toward the FRD with each point representing subject average. 
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Figure A 4. Boxplot showing median and 25-75 percent quantiles for maximum 

lane deviation during dropout events with each point representing subject mean. 

 

 

Figure A 3. Boxplot showing median and 25-75 percent quantiles for hand 

response time during work zone events with each point representing subject mean. 
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Figure A 5. Boxplot showing median and 25-75 percent quantiles for steering 

response time during work zone events with each point representing subject mean. 

Figure A 6. Boxplot showing median and 25-75 percent quantiles for maximum lane 

deviation during work zone events with each point representing subject mean. 
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Figure A 7. How comfortable did you feel transferring the vehicle into AutoDrive? 

Figure A 8. Compared to commuting in your regular vehicle, how likely is it that you would 

take your eyes off the road for several seconds while driving with AutoDrive engaged? 
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APPENDIX B: SUBJECTIVE EVALUATION OF HUMAN TRUST IN AV SYSTEMS 

Please rate using this 1-7 scale: 

In general, how comfortable did you feel during the drive? 

How comfortable did you feel transferring the vehicle into AutoDrive?  

How comfortable did you feel resuming manual control from AutoDrive during the drive? 

How comfortable did you feel when AutoDrive failed and you had to retake control? 

Compared to driving manually, how comfortable did you feel driving in AutoDrive? 

Did the vehicle drive differently in AutoDrive than when you were manually controlling it? 

Compared to commuting in your regular vehicle, how likely is it that you would take your eyes 

off the road for several seconds while driving with AutoDrive engaged? 
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